--- title: Visualising Missing Data author: Hugo Soubrier output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Visualising Missing Data} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ```{r setup} library(dplyr) library(ggplot2) library(epivis) ``` ```{r load-data} df <- epivis::moissala_measles glimpse(df) ``` By default `plot_miss_vis()` will plot a graph of the missing values in each of the observations and variables of the dataframe. It will present the proportions of missing values for a single variables in the label of the y-axis, and the overall proportions of missing value across the dataframe in the legend. ```{r} plot_miss_vis( df ) ``` ## Facet the graph The missing values plot can be facetted by a group variable using the `facet = "variable_name"` argument ```{r} df |> filter(site %in% c("Moïssala Hospital", "Bedaya Hospital")) |> plot_miss_vis( facet = "site" ) ``` ## Further customisation Colors of the graph can be changed using the `color_vec` argument. It takes a length 2 vector of HEX code, with the first color for Missing values. `y_axis_text_size` allows manual specification of the y-axis text size, which can be hard to read when exploring many variables. ```{r} df |> filter(site %in% c("Moïssala Hospital", "Bedaya Hospital")) |> plot_miss_vis( facet = "site", y_axis_text_size = 6, col_vec = c("seagreen", "lightblue") ) ```