
Package: hmatch (via r-universe)
October 24, 2024

Type Package

Title Tools for Cleaning and Matching Hierarchically-Structured Data

Version 0.1.0.9000

Description Tools for matching raw, potentially messy hierarchical
data (e.g. province, county, township) against a reference
dataset.

License MIT + file LICENSE

URL https://github.com/epicentre-msf/hmatch

BugReports https://github.com/epicentre-msf/hmatch/issues

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Depends R (>= 2.10)

Imports stringi, stringdist, dplyr, tidyr, rlang

Suggests testthat (>= 2.1.0), covr, sf

Repository https://epicentre-msf.r-universe.dev

RemoteUrl https://github.com/epicentre-msf/hmatch

RemoteRef HEAD

RemoteSha 1a57862a84e18711163fdc11b100ad1e60f2f491

Contents
count_tokens . 2
dictionary_recoding . 3
hcodes . 4
hmatch . 5
hmatch_composite . 7
hmatch_manual . 9

1

https://github.com/epicentre-msf/hmatch
https://github.com/epicentre-msf/hmatch/issues

2 count_tokens

hmatch_parents . 11
hmatch_permute . 13
hmatch_settle . 15
hmatch_split . 18
hmatch_tokens . 21
join_types . 24
max_levels . 24
ne_raw . 25
ne_ref . 26
ref_expand . 26
separate_hcode . 27
specifying_columns . 28
string_standardization . 29
string_std . 30

Index 32

count_tokens Find frequently occurring tokens within a hierarchical column

Description

Tokenized matching of hierarchical columns can yield false positives when there are tokens that
occur frequently in multiple unique hierarchical values (e.g. "South", "North", "City", etc.).

This is a helper function to find such frequently-occurring tokens, which can then be passed to the
exclude argument of hmatch_tokens. The frequency calculated is the number of unique, string-
standardized values in which a given token is found.

Usage

count_tokens(
x,
split = "[-_[:space:]]+",
min_freq = 2,
min_nchar = 3,
return_values = TRUE,
std_fn = string_std,
...

)

Arguments

x a character vector (generally a hierarchical column)

split regex pattern used to split values into tokens. By default splits on any sequence
of one or more space characters ("[:space:]"), dashes ("-"), and/or underscores
("_").

dictionary_recoding 3

min_freq minimum token frequency (i.e. number of unique values in which a given token
occurs). Defaults to 2.

min_nchar minimum token size in number of characters. Defaults to 3.

return_values logical indicating whether to return the standardized values in which each token
is found (TRUE), or only the count of the number of unique standardized values
(FALSE). Defaults to TRUE.

std_fn function to standardize strings, as performed within all hmatch_ functions. De-
faults to string_std. Set to NULL to omit standardization. See also string_standardization.

... additional arguments passed to std_fn()

Examples

french_departments <- c(
"Alpes-de-Haute-Provence", "Hautes-Alpes", "Ardennes", "Bouches-du-Rhône",
"Corse-du-Sud", "Haute-Corse", "Haute-Garonne", "Ille-et-Vilaine",
"Haute-Loire", "Hautes-Pyrénées", "Pyrénées-Atlantiques", "Hauts-de-Seine"

)

count_tokens(french_departments)

dictionary_recoding Dictionary-based recoding of values during hierarchical matching

Description

During hierarchical matching with the hmatch_ group of functions, values within raw can be tem-
porarily recoded to match values within ref based on a dictionary (argument dict) that maps raw
values to their desired replacement values (optionally limited to a given hierarchical column).

Note that this recoding is done internally, and doesn’t actually modify the values of raw that are
returned (it just enables a match to the proper values of ref).

For example, if the raw data contains entries of "USA" for variable "adm0", which we know corre-
spond to the value "United States" within the reference data, we can specify a dictionary as follows:

dict <- data.frame(value = "USA", replacement = "United States", variable = "adm0")

The column names in the dictionary don’t actually matter, but the column order must be:

1. value in raw to temporarily replace

2. replacement value (to match value in ref)

3. (optional) name of hierarchical column in raw to recode

4 hcodes

Specifying column(s) to recode

If the dictionary contains only two columns (values and replacements), then all recoding will be
applied to every hierarchical column.

To apply only a portion of the dictionary to all hierarchical columns (and the rest to specified
columns), a user can specify a third dictionary column with values of <NA> in rows where the
recoding should apply to all hierarchical columns. E.g.
dict <- data.frame(value = c("USA", "Washingtin" replace = c("United States", "Washington"), variable = c("adm0", NA))

For example, the dictionary above specifies that values of "USA" within column "adm0" will be
temporarily replaced with "United States", while values of "Washingtin" within any hierarchical
column will be replaced with "Washington".

String standardization

Note that string standardization as specifed by argument std_fn (see string_standardization) also
applies to dictionaries. For example, given the default standardization function which includes case-
standardization, a dictionary value of "USA" will match (and therefore recode) raw enries "USA"
and "usa", but not e.g. "U.S.A.".

hcodes Create codes to identify each unique combination of hierarchical lev-
els in a reference dataset

Description

Create codes to identify each unique combination of hierarchical levels in a reference dataset. Codes
may be integer-based (function hcodes_int) or string-based (hcodes_str). Integer-based codes
reflect the alphabetical ranking of each level within the next-highest level. They are constant-
width and may optionally be prefixed with any given string. String-based codes are created by
pasting together the values of each hierarchical level with a given separator (with options for string
standardization prior to collapsing).

Usage

hcodes_str(ref, pattern, by, sep = "__", std_fn = string_std)

hcodes_int(ref, pattern, by, prefix = "")

Arguments

ref data.frame containing hierarchical columns with reference data

pattern regex pattern to match the names of the hierarchical columns in ref (supply
either pattern or by)

by vector giving the names of the hierarchical columns in ref (supply either pattern
or by)

sep (only for hcodes_str) desired separator between levels in string-based codes
(defaults to "__")

hmatch 5

std_fn (only for hcodes_str) Function to standardize input strings prior to creating
codes. Defaults to string_std. Set to NULL to omit standardization. See also
string_standardization.

prefix (only for hcodes_int) character prefix for integer-based codes (defaults to "")

Value

A vector of codes

Examples

data(ne_ref)

string-based codes
hcodes_str(ne_ref, pattern = "^adm")

integer-based codes
hcodes_int(ne_ref, pattern = "^adm")

hmatch Match sets of hierarchical variables between a raw and reference
dataset

Description

Match sets of hierarchical values (e.g. province, county, township) in a raw, messy dataset to
corresponding values within a reference dataset, optionally accounting for discrepancies between
the datasets such as:

• variation in character case, use of accents, or spelling

• variation in hierarchical resolution (e.g. some entries specified to municipality but others only
to region)

• missing values at one or more hierarchical levels

Usage

hmatch(
raw,
ref,
pattern,
pattern_ref = pattern,
by,
by_ref = by,
type = "left",
allow_gaps = TRUE,
fuzzy = FALSE,
fuzzy_method = "osa",

6 hmatch

fuzzy_dist = 1L,
dict = NULL,
ref_prefix = "ref_",
std_fn = string_std,
...

)

Arguments

raw data frame containing hierarchical columns with raw data

ref data frame containing hierarchical columns with reference data

pattern regex pattern to match the hierarchical columns in raw

Note: hierarchical column names can be matched using either the pattern or by
arguments. Or, if neither pattern or by are specified, the hierarchical columns
are assumed to be all column names that are common to both raw and ref. See
specifying_columns.

pattern_ref regex pattern to match the hierarchical columns in ref. Defaults to pattern, so
only need to specify if the hierarchical columns have different names in raw and
ref.

by vector giving the names of the hierarchical columns in raw

by_ref vector giving the names of the hierarchical columns in ref. Defaults to by, so
only need to specify if the hierarchical columns have different names in raw and
ref.

type type of join ("left", "inner", "anti", "resolve_left", "resolve_inner", or "resolve_anti").
Defaults to "left". See join_types.

allow_gaps logical indicating whether to allow missing values below the match level, where
’match level’ is the highest level with a non-missing value within a given row of
raw. Defaults to TRUE.

fuzzy logical indicating whether to use fuzzy-matching (based on the stringdist
package). Defaults to FALSE.

fuzzy_method if fuzzy = TRUE, the method to use for string distance calculation (see stringdist-
metrics). Defaults to "osa".

fuzzy_dist if fuzzy = TRUE, the maximum string distance to use to classify matches (i.e. a
string distance less than or equal to fuzzy_dist will be considered matching).
Defaults to 1L.

dict optional dictionary for recoding values within the hierarchical columns of raw
(see dictionary_recoding)

ref_prefix prefix to add to names of returned columns from ref if they are otherwise iden-
tical to names within raw. Defaults to "ref_".

std_fn function to standardize strings during matching. Defaults to string_std. Set to
NULL to omit standardization. See also string_standardization.

... additional arguments passed to std_fn()

hmatch_composite 7

Value

a data frame obtained by matching the hierarchical columns in raw and ref, using the join type
specified by argument type (see join_types for more details)

Resolve joins

In hmatch, if argument type corresponds to a resolve join, rows of raw with multiple matches to
ref are always resolved to ’no match’. This is because hmatch does not accept matches below the
highest non-missing level within a given row of raw. E.g.

raw:
1. | United States | <NA> | Jefferson |

Relevant rows from ref:
1. | United States | New York | Jefferson |
2. | United States | Pennsylvania | Jefferson |

In a regular join with hmatch, the single row from raw (above) will match both rows of ref. How-
ever, in a resolve join the multiple conflicting matches (i.e. conflicting values at the 2nd hierarchical
level) will result in the row from raw being treated as non-matching to ref.

Examples

data(ne_raw)
data(ne_ref)

hmatch(ne_raw, ne_ref, pattern = "adm", type = "inner")

hmatch_composite Implement a variety of hierarchical matching strategies in sequence

Description

Match a data frame with raw, potentially messy hierarchical data (e.g. province, county, town-
ship) against a reference dataset, using a variety of matching strategies implemented in sequence to
identify the best-possible match (i.e. highest-resolution) for each row.

The sequence of matching strategies is:

1. (optional) manually-specified matching with hmatch_manual

2. complete matching with hmatch(..., allow_gaps = FALSE)

3. partial matching with hmatch(..., allow_gaps = TRUE)

4. fuzzy partial matching with hmatch(allow_gaps = TRUE, fuzzy = TRUE)

5. best-possible matching with hmatch_settle

Each approach is implement only on the rows of data for which a single match has not already been
identified using the previous approaches.

8 hmatch_composite

Usage

hmatch_composite(
raw,
ref,
man,
pattern,
pattern_ref = pattern,
by,
by_ref = by,
code_col,
type = "resolve_left",
allow_gaps = TRUE,
fuzzy = FALSE,
fuzzy_method = "osa",
fuzzy_dist = 1L,
dict = NULL,
ref_prefix = "ref_",
std_fn = string_std,
...

)

Arguments

raw data frame containing hierarchical columns with raw data

ref data frame containing hierarchical columns with reference data

man (optional) data frame of manually-specified matches, relating a given set of hi-
erarchical values to the code within ref to which those values correspond

pattern regex pattern to match the hierarchical columns in raw (and man if given) (see
also specifying_columns)

pattern_ref regex pattern to match the hierarchical columns in ref. Defaults to pattern, so
only need to specify if the hierarchical columns have different names in raw and
ref.

by vector giving the names of the hierarchical columns in raw (and man if given)

by_ref vector giving the names of the hierarchical columns in ref. Defaults to by, so
only need to specify if the hierarchical columns have different names in raw and
ref.

code_col name of the code column containing codes for matching ref and man (only
required if argument man is given)

type type of join ("resolve_left", "resolve_inner", or "resolve_anti"). Defaults to
"left". See join_types.

allow_gaps logical indicating whether to allow missing values below the match level, where
’match level’ is the highest level with a non-missing value within a given row of
raw. Defaults to TRUE.

fuzzy logical indicating whether to use fuzzy-matching (based on the stringdist
package). Defaults to FALSE.

hmatch_manual 9

fuzzy_method if fuzzy = TRUE, the method to use for string distance calculation (see stringdist-
metrics). Defaults to "osa".

fuzzy_dist if fuzzy = TRUE, the maximum string distance to use to classify matches (i.e. a
string distance less than or equal to fuzzy_dist will be considered matching).
Defaults to 1L.

dict optional dictionary for recoding values within the hierarchical columns of raw
(see dictionary_recoding)

ref_prefix prefix to add to names of returned columns from ref if they are otherwise iden-
tical to names within raw. Defaults to "ref_".

std_fn function to standardize strings during matching. Defaults to string_std. Set to
NULL to omit standardization. See also string_standardization.

... additional arguments passed to std_fn()

Value

a data frame obtained by matching the hierarchical columns in raw and ref, using the join type
specified by argument type (see join_types for more details)

Examples

data(ne_raw)
data(ne_ref)

hmatch_composite(ne_raw, ne_ref, fuzzy = TRUE)

hmatch_manual Manual hierarchical matching

Description

Match a data.frame with raw, potentially messy hierarchical data (e.g. province, county, township)
against a reference dataset, using a dictionary of manually-specified matches.

Usage

hmatch_manual(
raw,
ref,
man,
pattern,
pattern_ref = pattern,
by,
by_ref = by,
code_col,
type = "left",

10 hmatch_manual

ref_prefix = "ref_",
std_fn = string_std,
...

)

Arguments

raw data frame containing hierarchical columns with raw data

ref data frame containing hierarchical columns with reference data

man data.frame of manually-specified matches, relating a given set of hierarchical
values to the code within ref to which those values correspond

pattern regex pattern to match the hierarchical columns in raw and man (see also speci-
fying_columns)

pattern_ref regex pattern to match the hierarchical columns in ref. Defaults to pattern, so
only need to specify if the hierarchical columns have different names in raw and
ref.

by vector giving the names of the hierarchical columns in raw and man

by_ref vector giving the names of the hierarchical columns in ref. Defaults to by, so
only need to specify if the hierarchical columns have different names in raw and
ref.

code_col name of the code column containing codes for matching ref and man

type type of join ("left", "inner", or "anti"). Defaults to "left". See join_types. Note
that this function does not allow ’resolve joins’, unlike most other hmatch_ func-
tions.

ref_prefix prefix to add to names of returned columns from ref if they are otherwise iden-
tical to names within raw. Defaults to "ref_".

std_fn function to standardize strings during matching. Defaults to string_std. Set to
NULL to omit standardization. See also string_standardization.

... additional arguments passed to std_fn()

Value

a data frame obtained by matching the hierarchical columns in raw and ref based on sets of matches
specified in man, using the join type specified by argument type (see join_types for more details)

Examples

data(ne_raw)
data(ne_ref)

create df mapping sets of raw hierarchical values to codes within ref
ne_man <- data.frame(

adm0 = NA_character_,
adm1 = NA_character_,
adm2 = "Bergen, N.J.",
hcode = "211",
stringsAsFactors = FALSE

hmatch_parents 11

)

find manual matches
hmatch_manual(ne_raw, ne_ref, ne_man, code_col = "hcode", type = "inner")

hmatch_parents Hierarchical matching of parents based on sets of common offspring

Description

Match a hierarchical column (e.g. region, province, or county) within a raw, potentially messy
dataset against a corresponding column within a reference dataset, by searching for similar sets of
’offspring’ (i.e. values at the next hierarchical level).

For example, if the raw dataset uses admin1 level "NY" whereas the reference dataset uses "New
York", it would be difficult to automatically match these values using only fuzzy-matching. How-
ever, we might nonetheless be able to match "NY" to "New York" if they share a common and
unique set of ’offspring’ (i.e. admin2 values) across both datasets (e.g "Kings", "Queens", "New
York", "Suffolk", "Bronx", etc.).

Unlike other hmatch functions, the data frame returned by hmatch_parents only includes unique
hierarchical combinations and only relevant hierarchical levels (i.e. the parent level and above),
along with additional columns giving the number of matching children and total number of children
for a given parent.

Usage

hmatch_parents(
raw,
ref,
pattern,
pattern_ref = pattern,
by,
by_ref = by,
level,
min_matches = 1L,
type = "left",
fuzzy = FALSE,
fuzzy_method = "osa",
fuzzy_dist = 1L,
ref_prefix = "ref_",
std_fn = string_std,
...

)

12 hmatch_parents

Arguments

raw data frame containing hierarchical columns with raw data

ref data frame containing hierarchical columns with reference data

pattern regex pattern to match the hierarchical columns in raw

Note: hierarchical column names can be matched using either the pattern or by
arguments. Or, if neither pattern or by are specified, the hierarchical columns
are assumed to be all column names that are common to both raw and ref. See
specifying_columns.

pattern_ref regex pattern to match the hierarchical columns in ref. Defaults to pattern, so
only need to specify if the hierarchical columns have different names in raw and
ref.

by vector giving the names of the hierarchical columns in raw

by_ref vector giving the names of the hierarchical columns in ref. Defaults to by, so
only need to specify if the hierarchical columns have different names in raw and
ref.

level name or integer index of the hierarchical level to match at (i.e. the ’parent’
level). If a name, must correspond to a hierarchical column within raw, not
including the very last hierarchical column (which has no hierarchical children).
If an integer, must be between 1 and k-1, where k is the number of hierarchical
columns.

min_matches minimum number of matching offspring required for parents to be considered a
match. Defaults to 1.

type type of join ("left", "inner" or "anti") (defaults to "left")

fuzzy logical indicating whether to use fuzzy-matching (based on the stringdist
package). Defaults to FALSE.

fuzzy_method if fuzzy = TRUE, the method to use for string distance calculation (see stringdist-
metrics). Defaults to "osa".

fuzzy_dist if fuzzy = TRUE, the maximum string distance to use to classify matches (i.e. a
string distance less than or equal to fuzzy_dist will be considered matching).
Defaults to 1L.

ref_prefix prefix to add to names of returned columns from ref if they are otherwise iden-
tical to names within raw. Defaults to "ref_".

std_fn function to standardize strings during matching. Defaults to string_std. Set to
NULL to omit standardization. See also string_standardization.

... additional arguments passed to std_fn()

Value

a data frame obtained by matching the hierarchical columns in raw and ref (at the parent level and
above), using the join type specified by argument type (see join_types for more details). Note that
unlike other hmatch_ functions, hmatch_parents returns only unique rows and relevant hierarchical
columns (i.e. the parent level and above), along with additional columns describing the number of
matching children and total number of children for a given parent.

hmatch_permute 13

... hierarchical columns from raw, parent level and above

... hierarchical columns from ref, parent level and above

n_child_raw total number of unique children belonging to the parent within raw

n_child_ref total number of unique children belonging to the parent within ref

n_child_match number of children in raw with match in ref

Examples

e.g. match abbreviated adm1 names to full names based on common offspring
raw <- ne_ref
raw$adm1[raw$adm1 == "Ontario"] <- "ON"
raw$adm1[raw$adm1 == "New York"] <- "NY"
raw$adm1[raw$adm1 == "New Jersey"] <- "NJ"
raw$adm1[raw$adm1 == "Pennsylvania"] <- "PA"

hmatch_parents(
raw,
ne_ref,
pattern = "adm",
level = "adm1",
min_matches = 2,
type = "left"

)

hmatch_permute Hierarchical matching with sequential column permutation to allow
for values entered at the wrong hierarchical level

Description

Match a data frame with raw, potentially messy hierarchical data (e.g. province, county, township)
against a reference dataset, using sequential permutation of the hierarchical columns to allow for
values entered at the wrong hierarchical level.

The function calls hmatch on each possible permutation of the hierarchical columns, and then com-
bines the results. Rows of raw yielding multiple matches to ref can optionally be resolved using a
resolve-type join (see section Resolve joins below).

Usage

hmatch_permute(
raw,
ref,
pattern,
pattern_ref = pattern,
by,
by_ref = by,

14 hmatch_permute

type = "left",
allow_gaps = TRUE,
fuzzy = FALSE,
fuzzy_method = "osa",
fuzzy_dist = 1L,
dict = NULL,
ref_prefix = "ref_",
std_fn = string_std,
...

)

Arguments

raw data frame containing hierarchical columns with raw data

ref data frame containing hierarchical columns with reference data

pattern regex pattern to match the hierarchical columns in raw

Note: hierarchical column names can be matched using either the pattern or by
arguments. Or, if neither pattern or by are specified, the hierarchical columns
are assumed to be all column names that are common to both raw and ref. See
specifying_columns.

pattern_ref regex pattern to match the hierarchical columns in ref. Defaults to pattern, so
only need to specify if the hierarchical columns have different names in raw and
ref.

by vector giving the names of the hierarchical columns in raw

by_ref vector giving the names of the hierarchical columns in ref. Defaults to by, so
only need to specify if the hierarchical columns have different names in raw and
ref.

type type of join ("left", "inner", "anti", "resolve_left", "resolve_inner", or "resolve_anti").
Defaults to "left". See join_types.

allow_gaps logical indicating whether to allow missing values below the match level, where
’match level’ is the highest level with a non-missing value within a given row of
raw. Defaults to TRUE.

fuzzy logical indicating whether to use fuzzy-matching (based on the stringdist
package). Defaults to FALSE.

fuzzy_method if fuzzy = TRUE, the method to use for string distance calculation (see stringdist-
metrics). Defaults to "osa".

fuzzy_dist if fuzzy = TRUE, the maximum string distance to use to classify matches (i.e. a
string distance less than or equal to fuzzy_dist will be considered matching).
Defaults to 1L.

dict optional dictionary for recoding values within the hierarchical columns of raw
(see dictionary_recoding)

ref_prefix prefix to add to names of returned columns from ref if they are otherwise iden-
tical to names within raw. Defaults to "ref_".

hmatch_settle 15

std_fn function to standardize strings during matching. Defaults to string_std. Set to
NULL to omit standardization. See also string_standardization.

... additional arguments passed to std_fn()

Value

a data frame obtained by matching the hierarchical columns in raw and ref, using the join type
specified by argument type (see join_types for more details)

Resolve joins

In hmatch_permute, if argument type corresponds to a resolve join, rows of raw with multiple
matches to ref are resolved to the highest hierarchical level that is common among all matches (or
no match if there is a conflict at the very first level). E.g.

raw:
1. | United States | <NA> | New York |

Relevant rows from ref:
1. | United States | New York | <NA> |
2. | United States | New York | New York |

In a regular join with hmatch_permute, the single row from raw (above) will match both of the
depicted rows from ref. However, in a resolve join the two matches will resolve to the first row
from ref, because it reflects the highest hierarchical level that is common to all matches.

Examples

data(ne_raw)
data(ne_ref)

hmatch_permute(ne_raw, ne_ref, pattern = "^adm", type = "inner")

hmatch_settle Sequential hierarchical matching at each hierarchical level, settling
for the highest resolution match that is possible for each row

Description

Match sets of hierarchical values (e.g. province / county / township) in a raw, messy dataset to cor-
responding values within a reference dataset, sequentially over each hierarchical level. Specifically,
implements hmatch at each successive hierarchical level, starting with only the first level (lowest
resolution), then first and second, first second and third, etc.

After the initial matching over all levels, users can optionally use a resolve join to ’settle’ for the
highest match possible for each row of raw data, even if that match is below the highest-resolution
level specified.

16 hmatch_settle

Usage

hmatch_settle(
raw,
ref,
pattern,
pattern_ref = pattern,
by,
by_ref = by,
type = "left",
allow_gaps = TRUE,
fuzzy = FALSE,
fuzzy_method = "osa",
fuzzy_dist = 1L,
dict = NULL,
ref_prefix = "ref_",
std_fn = string_std,
...

)

Arguments

raw data frame containing hierarchical columns with raw data

ref data frame containing hierarchical columns with reference data

pattern regex pattern to match the hierarchical columns in raw

Note: hierarchical column names can be matched using either the pattern or by
arguments. Or, if neither pattern or by are specified, the hierarchical columns
are assumed to be all column names that are common to both raw and ref. See
specifying_columns.

pattern_ref regex pattern to match the hierarchical columns in ref. Defaults to pattern, so
only need to specify if the hierarchical columns have different names in raw and
ref.

by vector giving the names of the hierarchical columns in raw

by_ref vector giving the names of the hierarchical columns in ref. Defaults to by, so
only need to specify if the hierarchical columns have different names in raw and
ref.

type type of join ("left", "inner", "anti", "resolve_left", "resolve_inner", or "resolve_anti").
Defaults to "left". See join_types.

allow_gaps logical indicating whether to allow missing values below the match level, where
’match level’ is the highest level with a non-missing value within a given row of
raw. Defaults to TRUE.

fuzzy logical indicating whether to use fuzzy-matching (based on the stringdist
package). Defaults to FALSE.

fuzzy_method if fuzzy = TRUE, the method to use for string distance calculation (see stringdist-
metrics). Defaults to "osa".

hmatch_settle 17

fuzzy_dist if fuzzy = TRUE, the maximum string distance to use to classify matches (i.e. a
string distance less than or equal to fuzzy_dist will be considered matching).
Defaults to 1L.

dict optional dictionary for recoding values within the hierarchical columns of raw
(see dictionary_recoding)

ref_prefix prefix to add to names of returned columns from ref if they are otherwise iden-
tical to names within raw. Defaults to "ref_".

std_fn function to standardize strings during matching. Defaults to string_std. Set to
NULL to omit standardization. See also string_standardization.

... additional arguments passed to std_fn()

Value

a data frame obtained by matching the hierarchical columns in raw and ref, using the join type
specified by argument type (see join_types for more details)

Resolve joins

In a resolve type join with hmatch_settle, rows of raw with multiple matches to ref are resolved
to the highest hierarchical level that is non-conflicting among all matches (or no match if there is a
conflict at the very first level). E.g.

raw:
1. | United States | <NA> | Jefferson |

Relevant rows from ref:
1. | United States | <NA> | <NA> |
2. | United States | New York | Jefferson |
3. | United States | Pennsylvania | Jefferson |

In a regular join, the single row from raw (above) will match all three rows from ref. However, in
a resolve join the multiple matches will be resolved to the first row from ref, because only the first
hierarchical level ("United States") is non-conflicting among all possible matches.

Note that there’s a distinction between "common" values at a given hierarchical level (i.e. a single
unique value in each row) and "non-conflicting" values (i.e. a single unique value or a missing
value). E.g.

raw:
1. | United States | New York | New York |

Relevant rows from ref:
1. | United States | <NA> | <NA> |
2. | United States | New York | <NA> |
3. | United States | New York | New York |

In the example above, only the 1st hierarchical level ("United States") is "common" to all matches,
but all hierarchical levels are "non-conflicting" (i.e. because row 2 is a hierarchical child of row 1,
and row 3 a child of row 2), and so a resolve-type match will be made to the 3rd row in ref.

18 hmatch_split

Examples

data(ne_raw)
data(ne_ref)

return matches at all levels
hmatch_settle(ne_raw, ne_ref, pattern = "^adm", type = "inner")

use a resolve join to settle for the best possible match for each row
hmatch_settle(ne_raw, ne_ref, pattern = "^adm", type = "resolve_inner")

hmatch_split Hierarchical matching, separately at each hierarchical level

Description

Implements hierarchical matching, separately at each hierarchical level within the data. For a given
level, the raw data that is matched includes every unique combination of values at and below the
level of interest. E.g.

Level 1:
| Canada |
| United States |

Level 2:
Canada	Ontario
United States	New York
United States	Pennsylvania

Level 3:
Canada	Ontario	Ottawa
Canada	Ontario	Toronto
United States	New York	Bronx
United States	New York	New York
United States	Pennsylvania	Philadelphia

Usage

hmatch_split(
raw,
ref,
pattern,
pattern_ref = pattern,
by,
by_ref = by,
fn = "hmatch",
type = "left",

hmatch_split 19

allow_gaps = TRUE,
fuzzy = FALSE,
fuzzy_method = "osa",
fuzzy_dist = 1L,
dict = NULL,
ref_prefix = "ref_",
std_fn = string_std,
...,
levels = NULL,
always_list = FALSE,
man,
code_col,
always_tokenize = FALSE,
token_split = "_",
exclude_freq = 3,
exclude_nchar = 3,
exclude_values = NULL

)

Arguments

raw data frame containing hierarchical columns with raw data

ref data frame containing hierarchical columns with reference data

pattern regex pattern to match the hierarchical columns in raw

Note: hierarchical column names can be matched using either the pattern or by
arguments. Or, if neither pattern or by are specified, the hierarchical columns
are assumed to be all column names that are common to both raw and ref. See
specifying_columns.

pattern_ref regex pattern to match the hierarchical columns in ref. Defaults to pattern, so
only need to specify if the hierarchical columns have different names in raw and
ref.

by vector giving the names of the hierarchical columns in raw

by_ref vector giving the names of the hierarchical columns in ref. Defaults to by, so
only need to specify if the hierarchical columns have different names in raw and
ref.

fn which function to use for matching. Current options are hmatch, hmatch_permute,
hmatch_tokens, hmatch_settle, or hmatch_composite. Defaults to "hmatch".
Note that some subsequent arguments are only relevant for specific functions
(e.g. the exclude_ arguments are only relevant if fn = "hmatch_tokens").

type type of join ("left", "inner", "anti", "resolve_left", "resolve_inner", or "resolve_anti").
Defaults to "left". See join_types.
Note that the details of resolve joins vary somewhat among hmatch functions
(see documentation for the relevant function), and that function hmatch_composite
only allows resolve joins.

20 hmatch_split

allow_gaps logical indicating whether to allow missing values below the match level, where
’match level’ is the highest level with a non-missing value within a given row of
raw. Defaults to TRUE.

fuzzy logical indicating whether to use fuzzy-matching (based on the stringdist
package). Defaults to FALSE.

fuzzy_method if fuzzy = TRUE, the method to use for string distance calculation (see stringdist-
metrics). Defaults to "osa".

fuzzy_dist if fuzzy = TRUE, the maximum string distance to use to classify matches (i.e. a
string distance less than or equal to fuzzy_dist will be considered matching).
Defaults to 1L.

dict optional dictionary for recoding values within the hierarchical columns of raw
(see dictionary_recoding)

ref_prefix prefix to add to names of returned columns from ref if they are otherwise iden-
tical to names within raw. Defaults to "ref_".

std_fn function to standardize strings during matching. Defaults to string_std. Set to
NULL to omit standardization. See also string_standardization.

... additional arguments passed to std_fn()

levels a vector of names or integer indices corresponding to one or more of the hierar-
chical columns in raw to match at. Defaults to NULL in which case matches are
made at each hierarchical level.

always_list logical indicating whether to always return a list, even when argument levels
specifies a single match level. Defaults to FALSE.

man (optional) data frame of manually-specified matches, relating a given set of hi-
erarchical values to the code within ref to which those values correspond

code_col name of the code column containing codes for matching ref and man (only
required if argument man is given)

always_tokenize

logical indicating whether to tokenize all values prior to matching (TRUE), or
to first attempt non-tokenized matching with hmatch and only tokenize values
within raw (and corresponding putative matches within ref) that don’t have a
non-tokenized match (FALSE). Defaults to FALSE.

token_split regex pattern to split strings into tokens. Currently tokenization is implemented
after string-standardizatipn with argument std_fn (this may change in a future
version), so the regex pattern should split standardized strings rather than the
original strings. Defaults to "_".

exclude_freq exclude tokens from matching if they have a frequency greater than or equal to
this value. Refers to the number of unique, string-standardized values at a given
hierarchical level in which a given token occurs, as calculated by count_tokens
(separately for raw and ref). Defaults to 3.

exclude_nchar exclude tokens from matching if they have nchar less than or equal to this value.
Defaults to 3.

exclude_values character vector of additional tokens to exclude from matching. Subject to
string-standardizatipn with argument std_fn.

hmatch_tokens 21

Value

A list of data frames, each returned by a call to fn on the unique combination of hierarchical values
at the given hierarchical level. The number of elements in the list corresponds to the number of
hierarchical columns in raw, or, if specified, the number of elements in argument levels.

However, if always_list = FALSE and length(levels) == 1, a single data frame is returned (i.e.
not wrapped in a list).

Examples

data(ne_raw)
data(ne_ref)

by default calls fn `hmatch` separately for each hierarchical level
hmatch_split(ne_raw, ne_ref)

can also specify other hmatch functions, and subsets of hierarchical levels
hmatch_split(ne_raw, ne_ref, fn = "hmatch_tokens", levels = 2:3)

hmatch_tokens Hierarchical matching with tokenization of multi-term values

Description

Match sets of hierarchical values (e.g. province / county / township) in a raw, messy dataset to
corresponding values within a reference dataset, using tokenization to help match multi-term values
that might otherwise be difficult to match (e.g. "New York City" vs. "New York").

Includes options for ignoring matches from frequently-occurring tokens (e.g. "North", "South",
"City"), small tokens (e.g. "El", "San", "New"), or any other set of tokens specified by the user.

Usage

hmatch_tokens(
raw,
ref,
pattern,
pattern_ref = pattern,
by,
by_ref = by,
type = "left",
allow_gaps = TRUE,
always_tokenize = FALSE,
token_split = "_",
token_min = 1,
exclude_freq = 3,
exclude_nchar = 3,
exclude_values = NULL,

22 hmatch_tokens

fuzzy = FALSE,
fuzzy_method = "osa",
fuzzy_dist = 1L,
dict = NULL,
ref_prefix = "ref_",
std_fn = string_std,
...

)

Arguments

raw data frame containing hierarchical columns with raw data

ref data frame containing hierarchical columns with reference data

pattern regex pattern to match the hierarchical columns in raw

Note: hierarchical column names can be matched using either the pattern or by
arguments. Or, if neither pattern or by are specified, the hierarchical columns
are assumed to be all column names that are common to both raw and ref. See
specifying_columns.

pattern_ref regex pattern to match the hierarchical columns in ref. Defaults to pattern, so
only need to specify if the hierarchical columns have different names in raw and
ref.

by vector giving the names of the hierarchical columns in raw

by_ref vector giving the names of the hierarchical columns in ref. Defaults to by, so
only need to specify if the hierarchical columns have different names in raw and
ref.

type type of join ("left", "inner", "anti", "resolve_left", "resolve_inner", or "resolve_anti").
Defaults to "left". See join_types.

allow_gaps logical indicating whether to allow missing values below the match level, where
’match level’ is the highest level with a non-missing value within a given row of
raw. Defaults to TRUE.

always_tokenize

logical indicating whether to tokenize all values prior to matching (TRUE), or
to first attempt non-tokenized matching with hmatch and only tokenize values
within raw (and corresponding putative matches within ref) that don’t have a
non-tokenized match (FALSE). Defaults to FALSE.

token_split regex pattern to split strings into tokens. Currently tokenization is implemented
after string-standardizatipn with argument std_fn (this may change in a future
version), so the regex pattern should split standardized strings rather than the
original strings. Defaults to "_".

token_min minimum number of tokens that must match for a term to be considered match-
ing overall. Defaults to 1.

exclude_freq exclude tokens from matching if they have a frequency greater than or equal to
this value. Refers to the number of unique, string-standardized values at a given
hierarchical level in which a given token occurs, as calculated by count_tokens
(separately for raw and ref). Defaults to 3.

hmatch_tokens 23

exclude_nchar exclude tokens from matching if they have nchar less than or equal to this value.
Defaults to 3.

exclude_values character vector of additional tokens to exclude from matching. Subject to
string-standardizatipn with argument std_fn.

fuzzy logical indicating whether to use fuzzy-matching (based on the stringdist
package). Defaults to FALSE.

fuzzy_method if fuzzy = TRUE, the method to use for string distance calculation (see stringdist-
metrics). Defaults to "osa".

fuzzy_dist if fuzzy = TRUE, the maximum string distance to use to classify matches (i.e. a
string distance less than or equal to fuzzy_dist will be considered matching).
Defaults to 1L.

dict optional dictionary for recoding values within the hierarchical columns of raw
(see dictionary_recoding)

ref_prefix prefix to add to names of returned columns from ref if they are otherwise iden-
tical to names within raw. Defaults to "ref_".

std_fn function to standardize strings during matching. Defaults to string_std. Set to
NULL to omit standardization. See also string_standardization.

... additional arguments passed to std_fn()

Value

a data frame obtained by matching the hierarchical columns in raw and ref, using the join type
specified by argument type (see join_types for more details)

Resolve joins

Uses the same approach to resolve joins as hmatch.

Examples

data(ne_raw)
data(ne_ref)

add tokens to some values within ref to illustrate tokenized matching
ne_ref$adm0[ne_ref$adm0 == "United States"] <- "United States of America"
ne_ref$adm1[ne_ref$adm1 == "New York"] <- "New York State"

hmatch_tokens(ne_raw, ne_ref, type = "inner", token_min = 1)

24 max_levels

join_types Types of hierarchical joins

Description

The basic join types used in the hmatch package ("left", "inner", "anti") are conceptually equivalent
to dplyr’s join types.

For each of the three join types there is also a counterpart prefixed by "resolve_" ("resolve_left",
"resolve_inner", "resolve_anti"). In a resolve join rows of raw with matches to multiple rows of
ref are resolved either to a single best match or no match before the subsequent join type is imple-
mented. In a resolve join, rows of raw are never duplicated.

The exact details of match resolution vary somewhat among functions, and are explained within
each function’s documentation.

Value

left return all rows from raw, and all columns from raw and ref. Rows in raw with
no match in ref will have NA values in the new columns taken from ref. If there
are multiple matches between raw and ref, all combinations of the matches are
returned.

inner return only the rows of raw that have matches in ref, and all columns from raw
and ref. If there are multiple matches between raw and ref, all combinations
of the matches are returned.

anti return all rows from raw where there are not matches in ref, keeping just
columns from raw

resolve_left similar to "left", except that any row of raw that initially has multiple matches
to ref is resolved to either a single ’best’ match or no match. All rows of raw
are returned, and rows of raw are never duplicated.

resolve_inner similar to "inner", except that any row of raw that initially has multiple matches
to ref is resolved to either a single ’best’ match or no match. Only the rows of
raw that can be resolved to a single best match are returned, and rows of raw are
never duplicated.

resolve_anti similar to "anti", except that any row of raw that initially has multiple matches
to ref is considered non-matching (along with rows of raw that initially have no
matches to ref), and returned as a single row. Rows of raw are never duplicated.

max_levels Maximum hierarchical levels

Description

Given a data frame with columns specifying hierarchically-nested levels, find the maximum non-
missing hierarchical level for each row.

ne_raw 25

Usage

max_levels(x, pattern, by, type = c("index", "name"))

Arguments

x a data frame containing hierarchical columns
pattern regex pattern to match the names of the hierarchical columns in ref (supply

either pattern or by)
by vector giving the names of the hierarchical columns in ref (supply either pattern

or by)
type type of return, either "index" to return integer indices (starting at 1) or "name"

to return column names (as matched by pattern or by)

Value

Vector of indices or names corresponding to the maximum non-missing hierarchical level for each
row

Examples

data(ne_ref)

return integer indices (starting at 1)
max_levels(ne_raw, pattern = "^adm")

return column names
max_levels(ne_raw, pattern = "^adm", type = "name")

ne_raw Raw dataset

Description

Raw entries of select administrative districts from the northeastern portion of North America.

Usage

ne_raw

Format

A data.frame with 15 rows and 4 variables:

id Identifier
adm0 Name of administrative 0 level (country)
adm1 Name of administrative 1 level (state/province)
adm2 Name of administrative 2 level (county/census division)

26 ref_expand

ne_ref Reference dataset

Description

Reference table of select administrative districts in the northeastern portion of North America.

Usage

ne_ref

Format

A data.frame with 31 rows and 4 variables, all of class character:

level Administrative level

adm0 Name of administrative 0 level (country)

adm1 Name of administrative 1 level (state/province)

adm2 Name of administrative 2 level (county/census division)

hcode Hierarchical code

ref_expand Expand a reference data.frame containing N hierarchical columns to
an N-level reference data.frame

Description

For example, a municipality-level reference data.frame might contain three hierarchical columns
— country, state, and municipality — but nonetheless only reflect the municipality level in that
all rows represent a unique municipality. The lower-resolution levels (state, country) are implied
but not explicitly represented as unique rows. If we wish to allow matches to the lower-resolution
levels, we need additional rows specific to these levels.

This function takes a reference data.frame with N hierarchical columns, and adds rows for each
unique combination of each level that is not currently explicitly represented.

Usage

ref_expand(ref, pattern, by, lowest_level = 1L)

separate_hcode 27

Arguments

ref data.frame containing hierarchical columns with reference data

pattern regex pattern to match the names of the hierarchical columns in ref (supply
either pattern or by)

by vector giving the names of the hierarchical columns in ref (supply either pattern
or by)

lowest_level integer representing the lowest-resolution level (defaults to 1)

Value

A data.frame created by expanding ref to all implied hierarchical levels

Examples

subset example reference df to the admin-2 level
ne_ref_adm2 <- ne_ref[!is.na(ne_ref$adm2),]

expand back to all levels
ref_expand(ne_ref_adm2, pattern = "adm", lowest_level = 0)

separate_hcode Separate a hierarchical code reflecting multiple levels into its con-
stituent parts, with one column for each level

Description

Separate a data frame column containing hierarchical codes into multiple columns, one for each
level within the hierarchical code.

Like tidyr::separate except that successive levels are cumulative rather then independent. E.g.
the code "canada__ontario__toronto" would be split into three levels:

1. "canada"

2. "canada__ontario"

3. "canada__ontario__toronto"

Usage

separate_hcode(
x,
col,
into,
sep = "__",
extra = c("warn", "drop"),
remove = FALSE

)

28 specifying_columns

Arguments

x data.frame containing a column with hierarchical codes

col Name of the column within x containing hierarchical codes.

into Vector of column names to separate col into

sep Separator between levels in the hierarchical codes. Defaults to "__".

extra What to do if a hierarchical code contains more levels than are implied by argu-
ment into.

• "warn" (the default): emit a warning and drop extra values
• "drop": drop any extra values without a warning

remove Logical indicating whether to remove col from the output. Defaults to FALSE.

Value

The original data.frame x with additional columns for each level of the hierarchical code

Examples

data(ne_ref)

generate pcode
ne_ref$pcode <- hcodes_str(ne_ref, pattern = "^adm\\d")

separate pcode into constituent levels
separate_hcode(

ne_ref,
col = "pcode",
into = c("adm0_pcode", "adm1_pcode", "adm2_pcode")

)

specifying_columns Specifying hierarchical columns with arguments pattern or by

Description

Within the hmatch_ group of functions, there are three ways to specify the hierarchical columns to
be matched.

In all cases, it is assumed that matched columns are already correctly ordered, with the first matched
column reflecting the broadest hierarchical level (lowest-resolution, e.g. country) and the last col-
umn reflecting the finest level (highest-resolution, e.g. township).

(1) All column names common to raw and ref

If neither pattern nor by are specified (the default), then the hierarchical columns are assumed to
be all column names that are common to both raw and ref.

string_standardization 29

(2) Regex pattern

Arguments pattern and pattern_ref take regex patterns to match the hierarchical columns in
raw and ref, respectively. Argument pattern_ref only needs to be specified if it’s different from
pattern (i.e. if the hierarchical columns have different names in raw vs. ref).

For example, if the hierarchical columns in raw are "ADM_1", "ADM_2", and "ADM_3", which
correspond respectively to columns within ref named "REF_ADM_1", "REF_ADM_2", and "REF_ADM_3",
then the pattern arguments can be specified as:

• pattern = "^ADM_[[:digit:]]"

• pattern_ref = "^REF_ADM_[[:digit:]]"

Alternatively, because pattern_ref defaults to the same value as pattern (unless otherwise spec-
ified), one could specify a single regex pattern that matches the hierarchical columns in both raw
and ref, e.g.

• pattern = "ADM_[[:digit:]]"

However, the user should exercise care to ensure that there are no non-hierarchical columns within
raw or ref that may inadvertently be matched by the given pattern.

(3) Vector of column names

If the hierarchical columns cannot easily be matched with a regex pattern, one can specify the
relevant column names in vector form using arguments by and by_ref. As with pattern_ref,
argument by_ref only needs to be specified if it’s different from by (i.e. if the hierarchical columns
have different names in raw vs. ref).

For example, if the hierarchical columns in raw are "state", "county", and "township", which cor-
respond respectively to columns within ref named "admin1", "admin2", and "admin3", then theby
arguments can be specified with:

• by = c("state", "county", "township")

• by_ref = c("admin1", "admin2", "admin3")

string_standardization

String Standardization

Description

Prior to matching raw and reference datasets, one might wish to standardize the strings within the
match columns to account for differences in case, punctuation, etc.

By default, this standardization is performed with function string_std, which implements four
transformations:

1. standardize case (base::tolower)

2. remove sequences of non-alphanumeric characters at start or end of string

30 string_std

3. replace remaining sequences of non-alphanumeric characters with "_"

4. remove diacritics (stringi::stri_trans_general)

5. (optional) convert roman numerals (I, II, ..., XLIX) to arabic (1, 2, ..., 49)

Alternatively, the user may provide any function that takes a vector of strings and returns a vector
of transformed strings. To omit any transformation, set argument std_fn = NULL.

Note that the standardized versions of the match columns are never returned. They are used only
during matching, and then removed prior to the return.

string_std String standardization prior to matching

Description

Standardizes strings prior to performing a match, using the following transformations:

1. standardize case (base::tolower)

2. remove sequences of non-alphanumeric characters at start or end of string

3. replace remaining sequences of non-alphanumeric characters with "_"

4. remove diacritics (stringi::stri_trans_general)

5. (optional) convert roman numerals (I, II, ..., XLIX) to arabic (1, 2, ..., 49)

Usage

string_std(x, convert_roman = FALSE)

Arguments

x a string

convert_roman logical indiciating whether to convert roman numerals (I, II, ..., XLIX) to arabic
(1, 2, ..., 49)

Value

The standardized version of x

See Also

string_standardization

string_std 31

Examples

string_std("United STATES")
string_std("R\u00e9publique d\u00e9mocratique du Congo")

convert roman numerals to arabic
string_std("Mungindu-II (Sud)")
string_std("Mungindu-II (Sud)", convert_roman = TRUE)

note the conversion only works if the numeral is separated from other
alphanumeric characters by punctuation or space characters
string_std("MunginduII", convert_roman = TRUE) # roman numeral not recognized

Index

∗ datasets
ne_raw, 25
ne_ref, 26

count_tokens, 2, 20, 22

dictionary_recoding, 3, 6, 9, 14, 17, 20, 23
dplyr, 24

hcodes, 4
hcodes_int (hcodes), 4
hcodes_str (hcodes), 4
hmatch, 5, 7, 13, 15, 19, 20, 22, 23
hmatch_composite, 7, 19
hmatch_manual, 7, 9
hmatch_parents, 11
hmatch_permute, 13, 19
hmatch_settle, 7, 15, 19
hmatch_split, 18
hmatch_tokens, 2, 19, 21

join, 24
join_types, 6–10, 12, 14–17, 19, 22, 23, 24

max_levels, 24

nchar, 20, 23
ne_raw, 25
ne_ref, 26

ref_expand, 26

separate_hcode, 27
specifying_columns, 6, 8, 10, 12, 14, 16, 19,

22, 28
string-standardizatipn, 20, 22, 23
string-standardized, 2
string_standardization, 3–6, 9, 10, 12, 15,

17, 20, 23, 29, 30
string_std, 3, 5, 6, 9, 10, 12, 15, 17, 20, 23,

29, 30

stringdist, 6, 8, 12, 14, 16, 20, 23
stringdist-metrics, 6, 9, 12, 14, 16, 20, 23

tidyr::separate, 27

32

	count_tokens
	dictionary_recoding
	hcodes
	hmatch
	hmatch_composite
	hmatch_manual
	hmatch_parents
	hmatch_permute
	hmatch_settle
	hmatch_split
	hmatch_tokens
	join_types
	max_levels
	ne_raw
	ne_ref
	ref_expand
	separate_hcode
	specifying_columns
	string_standardization
	string_std
	Index

