
Package: queryr (via r-universe)
October 24, 2024

Title Data Validation Queries With Tidy Output

Version 0.1.0.9000

Description Data validation queries with tidy, stackable output.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Depends R (>= 2.10)

Imports dplyr, rlang

Suggests testthat, covr

Repository https://epicentre-msf.r-universe.dev

RemoteUrl https://github.com/epicentre-msf/queryr

RemoteRef HEAD

RemoteSha 95b0255f76361ad7ea3796891d9a45a9c11575ef

Contents

ll . 2
ll_queries . 2
query . 3
query2 . 5
query_list . 8
query_vec . 9
sll . 11

Index 12

1

2 ll_queries

ll Example dataset, an epidemiological linelist from a treatment centre

Description

Example dataset, an epidemiological linelist from a treatment centre

Usage

ll

Format

A data.frame with 12 rows and 10 variables:

id Patient identifier

site Site identifier

age Patient age in years

status Patient status

date_onset Date of symptom onset

date_admit Date of admission to treatment centre

date_lab Date of laboratory test

lab_result Result of laboratory test

date_exit Date of exit from treatment centre

outcome Patient outcome

ll_queries Example set of queries to run on ll using query_vec

Description

Example set of queries to run on ll using query_vec

Usage

ll_queries

Format

A data.frame with 5 rows and 2 variables:

query_id Query IDs

query Query expressions in string format

query 3

query Data validation queries with tidy, stackable output

Description

Find observations within a data frame matching a given query (a logical expression relating to one
or more variables), and return tidy output that can be stacked across different queries on different
variables. Stackability is achieved by pivoting the columns indicated in the query expression to
long-form, e.g. "variable1", "value1", "variable2", "value2", ...

The query expression can optionally incorporate up to two dot-selectors (".x" and ".y"), which each
refer to a set of variables specified separately using tidy-selection (see section Using a dot-selector).
If both selectors are used in a given query expression, the sets of variables they respectively match
can either be "crossed" such that all combinations are evaluated, or evaluated in parallel.

By default, only the data columns referenced in the query expression are returned, but additional
columns can optionally be added with argument cols_base.

Usage

query(
data,
cond,
cols_dotx,
cols_doty,
crossed = FALSE,
cols_base,
pivot_long = TRUE,
pivot_var = "variable",
pivot_val = "value",
as_chr = TRUE,
count = FALSE

)

Arguments

data A data frame

cond An expression to evaluate with respect to variables within data. Can specify
multiple variables using a dot-selector (".x" and ".y") within the expression
(e.g. .x > 0) and then separately specifying the columns that the selector refers
to with arguments cols_dotx/cols_doty.

cols_dotx, cols_doty
Tidy-selection of one or more columns represented by a .x or .y selector. Only
used if cond contains the relevant selector. See section Using a dot-selector
below.

crossed if cond contains both a .x and .y selector, should the variables matched by
cols_dotx and cols_doty be "crossed" such that all combinations are eval-
uated (TRUE), or should they be evaluated in parallel (FALSE). The latter requires

4 query

that the number of variables matched by cols_dotx and cols_doty is the same.
Defaults to FALSE.

cols_base (Optional) Tidy-selection of other columns within data to retain in the output.
Can optionally be set for an entire session using option "queryr_cols_base", e.g.
options(queryr_cols_base = quote(id:site)).

pivot_long Logical indicating whether to pivot the variables referenced within cond to a
long (i.e. stackable) format, with default column names "variable1", "value1",
"variable2", "value2", ... Defaults to TRUE.

pivot_var Prefix for pivoted variable column(s). Defaults to "variable". Only used if
pivot_long = TRUE.

pivot_val Prefix for pivoted value column(s). Defaults to "value". Only used if pivot_long
= TRUE.

as_chr Logical indicating whether to coerce the columns referenced in the query ex-
pression cond to character prior to returning. This enables row-binding multiple
queries with variables of different classes, but is only important if pivot_long
= TRUE. Defaults to TRUE.

count Logical indicating whether to summarize the output by counting the number
of unique combinations across all returned columns (with count column "n").
Defaults to FALSE.

Value

A data frame reflecting the rows of data that match the given query. Returned columns include:

• (optional) columns matched by argument cols_base

• columns referenced within the query expression (pivoted to long form by default)

• (optional) count column "n" (if count = TRUE)

Using a dot-selector

A query expression can optionally incorporate up to two dot-selectors (".x" and ".y"), which
each refer to a set of variables specified separately using tidy-selection (arguments cols_dotx and
cols_doty).

When cond contains a .x selector, the query expression is evaluated repeatedly with each relevant
variable from cols_dotx individually substituted into the .x position of the expression. The results
of these multiple ’subqueries’ are then combined with dplyr::bind_rows.

If cond contains both a .x and .y selector, the sets of variables matched by cols_dotx and cols_doty
respectively can either be "crossed" such that all combinations are evaluated, or evaluated in parallel.
Evaluating in parallel requires that the number of variables matched by cols_dotx and cols_doty
is the same.

Consider a hypothetical query checking that, if a patient has a particular symptom, the date of onset
of that symptom is not missing. E.g.
cond = .x == "Yes" & is.na(.y)
cols_dotx = c(symptom_fever, symptom_headache)
cols_doty = c(date_symptom_fever, date_symptom_headache)

query2 5

If argument crossed is FALSE, the relevant variables from cols_dotx and cols_doty will be eval-
uated in parallel, as in:
has_symptom_fever == "Yes" & is.na(date_symptom_fever)
has_symptom_headache == "Yes" & is.na(date_symptom_headache)

Conversely, if argument crossed is TRUE, all combinations of the relevant variables will be evalu-
ated, which for this particular query wouldn’t make sense:
symptom_fever == "Yes" & is.na(date_symptom_fever)
symptom_fever == "Yes" & is.na(date_symptom_headache) # not relevant
symptom_headache == "Yes" & is.na(date_symptom_fever) # not relevant
symptom_headache == "Yes" & is.na(date_symptom_headache)

Note that if a dot-selector is used with argument pivot_long = FALSE, the row-binding of multiple
subqueries may result in a sparse output with respect to the variables represented by the dot-selector,
because for each subquery only the columns matched by expression cond are returned.

Examples

load example dataset, an epidemiological 'linelist'
data(ll)

find observations where date_exit is earlier than date_admit
query(

ll,
date_exit < date_admit,
cols_base = id:site

)

find any date value in the future using a .x column selector
query(

ll,
.x > Sys.Date(),
cols_dotx = starts_with("date"),
cols_base = id:site

)

incorporate an external object into the query expression
lab_result_valid <- c("Positive", "Negative", "Inc.", NA)

query(
ll,
!lab_result %in% lab_result_valid,
cols_base = id:site,

)

query2 Data validation queries across two data frames

6 query2

Description

Find observations matching a query that concerns two data frames, and return tidy, stackable output.
Entails three steps:

1. separately query each of the two data frames using query

2. combine the resulting query outputs based on a given join type (semi, anti, left, or inner)

3. execute a third query on the joined output

Each of the query steps is optional — unspecified query expressions are replaced with TRUE such
that all rows of the relevant input are returned.

Usage

query2(
data1,
data2,
cond1,
cond2,
cols_base1,
cols_base2,
join_type,
join_by,
cond3,
pivot_long = TRUE,
pivot_var = "variable",
pivot_val = "value",
as_chr = TRUE

)

Arguments

data1 Data frame to query (#1)

data2 Data frame to query (#2)

cond1 (Optional) Expression to evaluate with respect to data1. If missing will be set
to TRUE to select all rows.

cond2 (Optional) Expression to evaluate with respect to data2. If missing will be set
to TRUE to select all rows.

cols_base1 (Optional) Tidy-selection of other columns within data1 to retain in the final
output. Can be set for an entire session using option "queryr_cols_base", e.g.
options(queryr_cols_base = quote(id:site)).

cols_base2 (Optional) Tidy-selection of other columns within data2 to retain in the final
output.

join_type How to join the output from the two initial queries ("semi", "anti", "left", or
"inner"). Based on dplyr join types.

join_by A character vector of variables to join by. If the join key columns have different
names in data1 and data2, use a named vector. For example, by = c("a" =
"b") will match data1$a to data2$b.

query2 7

cond3 (Optional) Expression to evaluate with respect to the joined output of the two
initial queries. If missing will be set to TRUE to select all rows.
Note that if join_type is a filtering join ("anti" or "semi"), only variables from
data1 can be referenced in cond3 (referencing a variable that only exists in
data2 will result in an error).
If join_type is instead a mutating join ("left" or "inner"), all variables from
data1 and data2 will be available to cond3, even if not otherwise referenced
with cond1/cond2 or cols_base1/cols_base2.

pivot_long Logical indicating whether to pivot the variables referenced within the query
expression(s) to a long (i.e. stackable) format, with default column names "vari-
able1", "value1", "variable2", "value2", ... Defaults to TRUE. If cond3 is specified
and pivot_long is TRUE, the pivot happens only in the final query (i.e. cond3).

pivot_var Prefix for pivoted variable column(s). Defaults to "variable". Only used if
pivot_long = TRUE.

pivot_val Prefix for pivoted value column(s). Defaults to "value". Only used if pivot_long
= TRUE.

as_chr Logical indicating whether to coerce the columns referenced in the query ex-
pression(s) to character prior to returning. This enables row-binding multiple
queries with variables of different classes, but is only important if pivot_long
= TRUE. Defaults to TRUE.

Value

A data frame reflecting the rows of data1 that match the given query. Returned columns include:

• Columns matched by argument cols_base1

• Columns matched by argument cols_base2 (only if join type is "left" or "inner")

• Columns referenced within the relevant condition statements (pivoted to long form by default).

If the join type is a mutating join ("left" or "inner"), variables from data1 or data2 refer-
enced in any of the condition statements (cond1, cond2, or cond3) will appear in the output.
However, with a filtering join ("anti" or "semi") only variables from data1 will appear in the
output.

Examples

example datasets: two related epidemiological linelists
data(ll) # ll from treatment center (all cases, confirmed and non-confirmed)
data(sll) # summary linelist (only confirmed/probable cases)

find patients in ll that don't appear in sll
query2(

ll,
sll,
cols_base1 = c(id, site, status),
join_type = "anti",
join_by = c("id" = "tc_id")

)

8 query_list

find patients with different outcome status in ll vs sll
query2(

ll,
sll,
cols_base1 = id:site,
join_type = "inner",
join_by = c("id" = "tc_id"),
cond3 = status != sll_status

)

query_list Data validation queries across a list of data frames

Description

Find observations matching a query that concerns one or more data frames within a list of data
frames, and return tidy, stackable output. Like query but enables query expressions that reference
variables in multiple data frames.

If the query expression references variables from data frames (i.e. list elements) other than the focal
element, the relevant variable(s) will be joined to the focal element before the query expression is
evaluated, see arguments join_type and join_by below.

Usage

query_list(
x,
cond,
element,
cols_base,
join_type = "left",
join_by,
pivot_long = TRUE,
pivot_var = "variable",
pivot_val = "value",
as_chr = TRUE

)

Arguments

x A list of data frames

cond Expression to evaluate with respect to one or more variables in one or more of
the data frames within x.

element Name or integer index of the focal list element of x for the given query. If
the query expression cond references variables from list elements apart from
element, the relevant variable(s) will be joined to x[[element]] before the

query_vec 9

query expression is evaluated, based on the join_type and join_by arguments
described below.

cols_base (Optional) Tidy-selection of other columns within data to retain in the output.
Can optionally be set for an entire session using option "queryr_cols_base", e.g.
options(queryr_cols_base = quote(id:site)).

join_type If cond references variables within elements of x apart from x[[element]],
what type of join should be used to join the relevant elements? Options are
"left" (the default) and "inner". Based on dplyr join types.

join_by A character vector of variables to join by. If the join key columns have different
names in x[[element]] and x[[other]], use a named vector. For example,
join_by = c("a" = "b") will match x[[element]]$a to x[[other]]$b.

pivot_long Logical indicating whether to pivot the variables referenced within cond to a
long (i.e. stackable) format, with default column names "variable1", "value1",
"variable2", "value2", ... Defaults to TRUE.

pivot_var Prefix for pivoted variable column(s). Defaults to "variable". Only used if
pivot_long = TRUE.

pivot_val Prefix for pivoted value column(s). Defaults to "value". Only used if pivot_long
= TRUE.

as_chr Logical indicating whether to coerce the columns referenced in the query ex-
pression cond to character prior to returning. This enables row-binding multiple
queries with variables of different classes, but is only important if pivot_long
= TRUE. Defaults to TRUE.

Value

A data frame reflecting the rows of x[[element]] that match the given query. Returned columns
include:

• (optional) columns matched by argument cols_base

• columns referenced within the query expression (pivoted to long form by default)

query_vec Data validation queries vectorized over multiple query expressions

Description

Data validation queries with query or query_list, but vectorized over a set of query expressions in
string format (and optionally a corresponding vector of query names/IDs). Results of the multiple
queries are stacked and returned in a single tidy data frame, with columns referenced in the query
expressions pivoted to long-form (e.g. "variable1", "value1", "variable2", "value2", ...).

10 query_vec

Usage

query_vec(
x,
cond,
element,
name,
cols_base,
name_col = "query_id",
join_type = "left",
join_by = NULL,
pivot_var = "variable",
pivot_val = "value",
as_chr = TRUE

)

Arguments

x A data frame or a list of data frames to query. If a single data frame will vectorize
with query, whereas given a list of data frames will use query_list.

cond Character vector of expressions to evaluate with respect to variables within x.
element If x is a list of data frames, the names or integer indexes of the focal list element

of x corresponding to each query expression (i.e. each element of cond). Only
used if x is a list of data frames (see query_list).

name (Optional) Character vector giving query names/IDs for each of the expressions
within cond. If missing the expressions themselves (in string format) are used
as names.

cols_base (Optional) Tidy-selection of other columns within x (or x[[element]]) to retain
in the final output. Can be set for an entire session using option "queryr_cols_base",
e.g. options(queryr_cols_base = quote(id:site)).

name_col Column name for the query names/IDs. Defaults to "query_id".
join_type If x is a list of data frames and cond references variables within elements of x

apart from x[[element]], what type of join should be used to join the relevant
elements? Options are "left" (the default) and "inner". Based on dplyr join
types. Can specify different join types for different query expressions by passing
a vector the same length as cond.

join_by A character vector of variables to join by, or list of vectors the same length
as cond. If the join key columns have different names in x[[element]] and
x[[other]], use a named vector. For example, join_by = c("a" = "b") will
match x[[element]]$a to x[[other]]$b. Can specify different join columns
for different query expressions by passing a list of vectors the same length as
cond.

pivot_var Prefix for pivoted variable column(s). Defaults to "variable".
pivot_val Prefix for pivoted value column(s). Defaults to "value".
as_chr Logical indicating whether to coerce the columns referenced in the query ex-

pression(s) to character prior to returning. This enables row-binding multiple
queries with variables of different classes. Defaults to TRUE.

sll 11

Value

A data frame reflecting the rows of data that match the given queries. Returned columns include:

• query name/ID column (name taken from argument name_col)
• (optional) columns matched by argument cols_base
• columns referenced within the query expressions, pivoted to long form

See Also

query

Examples

data(ll) # example dataset, an epidemiological linelist
data(ll_queries) # example data frame defining queries to run on ll

run all queries defined in ll_queries
query_vec(

ll,
cond = ll_queries$query,
name = ll_queries$query_id,
cols_base = c(id, site)

)

sll Example dataset, a summary epidemiological linelist containing only
confirmed/probable cases

Description

Example dataset, a summary epidemiological linelist containing only confirmed/probable cases

Usage

sll

Format

A data.frame with 10 rows and 8 variables:

sll_id Patient identifier in the summary linelist
tc_admit Was patient admitted to a treatment centre?
tc_id Patient ID at treatment centre
tc_site Site of treatment centre
sll_age Date of symptom onset
sll_status Date of admission to hospital
sll_date_outcome Date of laboratory test
sll_outcome Patient outcome

Index

∗ datasets
ll, 2
ll_queries, 2
sll, 11

dplyr::bind_rows, 4

join, 6, 9, 10

ll, 2
ll_queries, 2

query, 3, 6, 8–11
query2, 5
query_list, 8, 9, 10
query_vec, 2, 9

sll, 11

12

	ll
	ll_queries
	query
	query2
	query_list
	query_vec
	sll
	Index

