
Package: qxl (via r-universe)
October 24, 2024

Title Quick Customized Excel Files

Version 0.0.0.9000

Description A wrapper to the openxlsx package optimized for writing
flat data structures.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

Depends R (>= 2.10)

Imports openxlsx, readxl, dplyr, rlang, tidyr, lubridate

Suggests testthat (>= 3.0.0), tibble, covr

Repository https://epicentre-msf.r-universe.dev

RemoteUrl https://github.com/epicentre-msf/qxl

RemoteRef HEAD

RemoteSha 3791270366a2aaf38bb60f26bab30f87d6e8f8b9

Contents

expr_to_excel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
qprotect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
qread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
qstyle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
qwrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
qxl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Index 14

1



2 qprotect

expr_to_excel Translate an R expression into an Excel conditional formatting for-
mula

Description

Translate an R expression into an Excel conditional formatting formula

Usage

expr_to_excel(x, data, row_start = 2L)

Arguments

x An R-style expression

data A data frame that expression x relates to

row_start Integer reflecting the first row of data in the Excel sheet to be output. Defaults
to 2.

Value

A character string reflecting an Excel conditional formatting formula

Examples

library(datasets)

expr_to_excel(cyl > 4, mtcars)
expr_to_excel(cyl > 4 & hp < 200, mtcars)

qprotect Protect one ore more columns of a worksheet

Description

Wrapper to openxlsx::protectWorksheet with additional argument cols to enable protection to
be limited to specific columns.

In practice, protection is first applied to the entire worksheet, and then subsequently columns not
selected for protection (if any) are unlocked one by one. This unlock step (when relevant) also
requires a row specification, which by default we limit to the range of the current data. Thus, in
’unprotected’ columns within protected worksheets, rows beyond the range of the data will remain
protected. As a hack to work around this, the user can specify a ’buffer’ of additional empty rows
to unprotect within each non-protected column (e.g. to allow further data entry).



qprotect 3

Usage

qprotect(
password = NULL,
cols = everything(),
row_buffer = 0L,
protect = TRUE,
lockSelectingLockedCells = FALSE,
lockSelectingUnlockedCells = FALSE,
lockFormattingCells = FALSE,
lockFormattingColumns = FALSE,
lockFormattingRows = FALSE,
lockInsertingColumns = TRUE,
lockInsertingRows = TRUE,
lockInsertingHyperlinks = FALSE,
lockDeletingColumns = TRUE,
lockDeletingRows = TRUE,
lockSorting = FALSE,
lockAutoFilter = FALSE,
lockPivotTables = NULL,
lockObjects = NULL,
lockScenarios = NULL

)

Arguments

password (optional) password required to unprotect the worksheet

cols Tidy-selection specifying the columns that protection should apply to. Defaults
to dplyr::everything to select all columns.

row_buffer The number of additional rows (beyond the range of the current data) to unpro-
tect within columns not specified in argument cols. See explanation in Descrip-
tion. Defaults to 0.

protect Whether to protect or unprotect the sheet (default=TRUE)
lockSelectingLockedCells

Whether selecting locked cells is locked
lockSelectingUnlockedCells

Whether selecting unlocked cells is locked
lockFormattingCells

Whether formatting cells is locked
lockFormattingColumns

Whether formatting columns is locked
lockFormattingRows

Whether formatting rows is locked
lockInsertingColumns

Whether inserting columns is locked
lockInsertingRows

Whether inserting rows is locked



4 qread

lockInsertingHyperlinks

Whether inserting hyperlinks is locked

lockDeletingColumns

Whether deleting columns is locked

lockDeletingRows

Whether deleting rows is locked

lockSorting Whether sorting is locked

lockAutoFilter Whether auto-filter is locked
lockPivotTables

Whether pivot tables are locked

lockObjects Whether objects are locked

lockScenarios Whether scenarios are locked

qread Read xls and xlsx worksheet

Description

Wrapper to readxl::read_excel with minor changes to default settings:

• columns of dates with no time component have class "Date" rather than "POSIX"

• empty columns are read in as class "character" rather than "logical"

• the max number of rows used to guess column types is 10k rather than 1k

Usage

qread(
path,
sheet = NULL,
range = NULL,
col_names = TRUE,
col_types = NULL,
simplify_dates = TRUE,
empty_cols_to_chr = TRUE,
na = "",
trim_ws = TRUE,
skip = 0,
n_max = Inf,
guess_max = min(10000, n_max),
progress = FALSE,
.name_repair = "unique"

)



qread 5

Arguments

path Path to the xls/xlsx file.

sheet Sheet to read. Either a string (the name of a sheet), or an integer (the position
of the sheet). Ignored if the sheet is specified via range. If neither argument
specifies the sheet, defaults to the first sheet.

range A cell range to read from, as described in cell-specification. Includes typi-
cal Excel ranges like "B3:D87", possibly including the sheet name like "Bud-
get!B2:G14", and more. Interpreted strictly, even if the range forces the inclu-
sion of leading or trailing empty rows or columns. Takes precedence over skip,
n_max and sheet.

col_names TRUE to use the first row as column names, FALSE to get default names, or a
character vector giving a name for each column. If user provides col_types as
a vector, col_names can have one entry per column, i.e. have the same length
as col_types, or one entry per unskipped column.

col_types Either NULL to guess all from the spreadsheet or a character vector containing
one entry per column from these options: "skip", "guess", "logical", "numeric",
"date", "text" or "list". If exactly one col_type is specified, it will be recycled.
The content of a cell in a skipped column is never read and that column will not
appear in the data frame output. A list cell loads a column as a list of length 1
vectors, which are typed using the type guessing logic from col_types = NULL,
but on a cell-by-cell basis.

simplify_dates Logical indicating whether to convert date columns lacking a time component to
class "Date". By default readxl::read_excel reads columns containing dates or
datetimes as class POSIX, even if there is no time component (i.e. in which case
the times will all be "00:00:00"). If simplify_posix is TRUE (the default),
columns containing dates with no nonzero time values are converted to class
"Date" using lubridate::as_date.

empty_cols_to_chr

Logical indicating whether columns of class "logical" containing all missing val-
ues should be converted to class "character". If argument col_types is NULL
(the default), columns containing all missing values are read in by readxl::read_excel
as class "logical". If empty_cols_to_chr is TRUE (the default), such columns are
converted to class "character".

na Character vector of strings to interpret as missing values. By default, readxl
treats blank cells as missing data.

trim_ws Should leading and trailing whitespace be trimmed?

skip Minimum number of rows to skip before reading anything, be it column names
or data. Leading empty rows are automatically skipped, so this is a lower bound.
Ignored if range is given.

n_max Maximum number of data rows to read. Trailing empty rows are automatically
skipped, so this is an upper bound on the number of rows in the returned tibble.
Ignored if range is given.

guess_max Maximum number of data rows to use for guessing column types.

progress Display a progress spinner? By default, the spinner appears only in an inter-
active session, outside the context of knitting a document, and when the call is



6 qstyle

likely to run for several seconds or more. See readxl_progress() for more
details.

.name_repair Handling of column names. Passed along to tibble::as_tibble(). readxl’s
default is ‘.name_repair = "unique", which ensures column names are not empty
and are unique.

qstyle Conditional cell styles

Description

Wrapper to openxlsx::createStyle to create cell styles, with additional arguments rows and
cols to specify the rows and/or columns that the style should apply to.

Usage

qstyle(
rows = "data",
cols = everything(),
fontName = NULL,
fontSize = NULL,
fontColour = NULL,
border = NULL,
borderColour = getOption("openxlsx.borderColour", "black"),
borderStyle = getOption("openxlsx.borderStyle", "thin"),
bgFill = NULL,
fgFill = NULL,
halign = NULL,
valign = NULL,
textDecoration = NULL,
wrapText = FALSE,
textRotation = NULL,
indent = NULL,
locked = NULL,
hidden = NULL

)

Arguments

rows Which rows the style should apply to. Can be set using either:

Keyword: (e.g. rows = "data" or rows = "all")
Keyword "data" (the default) applies a style to all data rows (excludes the header),
whereas keyword "all" applies a style to all rows (header and data)



qstyle 7

Integer rows indexes: (e.g. rows = c(2, 5, 6))
Note that in this case indexes represent Excel rows rather than R rows (i.e. the
header is row 1).

An expression: (e.g. rows = cyl > 4)
Given an expression the style is applied using conditional formatting, with the
expression translated into its Excel formula equivalent.

Expressions can optionally include a .x selector (e.g. .x == 1) to refer to multi-
ple columns. See section Using a .x selector below.

Note that conditional formatting can update in real time if relevant data is changed
within the workbook.

cols Tidy-selection specifying the columns that the style should apply to. Defaults to
dplyr::everything to select all columns.

fontName A name of a font. Note the font name is not validated. If fontName is NULL,
the workbook base font is used. (Defaults to Calibri)

fontSize Font size. A numeric greater than 0. If fontSize is NULL, the workbook base
font size is used. (Defaults to 11)

fontColour Colour of text in cell. A valid hex colour beginning with "#" or one of colours().
If fontColour is NULL, the workbook base font colours is used. (Defaults to
black)

border Cell border. A vector of "top", "bottom", "left", "right" or a single string).

• "top" Top border
• bottom Bottom border
• left Left border
• right Right border
• TopBottom or c("top", "bottom") Top and bottom border
• LeftRight or c("left", "right") Left and right border
• TopLeftRight or c("top", "left", "right") Top, Left and right border
• TopBottomLeftRight or c("top", "bottom", "left", "right") All borders

borderColour Colour of cell border vector the same length as the number of sides specified in
"border" A valid colour (belonging to colours()) or a valid hex colour beginning
with "#"

borderStyle Border line style vector the same length as the number of sides specified in
"border"

• none No Border
• thin thin border
• medium medium border
• dashed dashed border
• dotted dotted border
• thick thick border
• double double line border



8 qstyle

• hair Hairline border
• mediumDashed medium weight dashed border
• dashDot dash-dot border
• mediumDashDot medium weight dash-dot border
• dashDotDot dash-dot-dot border
• mediumDashDotDot medium weight dash-dot-dot border
• slantDashDot slanted dash-dot border

bgFill Cell background fill colour. A valid colour (belonging to colours()) or a valid
hex colour beginning with "#". – Use for conditional formatting styles only.

fgFill Cell foreground fill colour. A valid colour (belonging to colours()) or a valid
hex colour beginning with "#"

halign Horizontal alignment of cell contents

• left Left horizontal align cell contents
• right Right horizontal align cell contents
• center Center horizontal align cell contents
• justify Justify horizontal align cell contents

valign A name Vertical alignment of cell contents

• top Top vertical align cell contents
• center Center vertical align cell contents
• bottom Bottom vertical align cell contents

textDecoration Text styling.

• bold Bold cell contents
• strikeout Strikeout cell contents
• italic Italicise cell contents
• underline Underline cell contents
• underline2 Double underline cell contents
• accounting Single accounting underline cell contents
• accounting2 Double accounting underline cell contents

wrapText Logical. If TRUE cell contents will wrap to fit in column.

textRotation Rotation of text in degrees. 255 for vertical text.

indent Horizontal indentation of cell contents.

locked Whether cell contents are locked (if worksheet protection is turned on)

hidden Whether the formula of the cell contents will be hidden (if worksheet protection
is turned on)

Using a .x selector

An expression passed to the rows argument can optionally incorporate a .x selector to refer to
multiple columns within the worksheet.

When a .x selector is used, each column specified in arguments cols is independently swapped
into the .x position of the expression, which is then translated to the Excel formula equivalent and
applied as conditional formatting to the worksheet.

For example, given the following qstyle specification with respect to the mtcars dataset



qwrite 9

qstyle(
rows = .x == 1,
cols = c(vs, am, carb),
bgFill = "#FFC7CE"

)

the style bgFill = "#FFC7CE" would be independently applied to any cell in columns vs, am, or
carb with a value of 1.

Examples

# apply style halign = "center" to all data rows (by default rows = "data")
qstyle(halign = "center")

# apply style halign = "center" to all rows including header
qstyle(rows = "all", halign = "center")

# apply style halign = "center" to Excel rows 2:10
qstyle(rows = 2:10, halign = "center")

# apply conditional formatting to rows where cyl == 8 & mpg > 16
qstyle(cyl == 8 & mpg > 16, fgFill = "#fddbc7", textDecoration = "bold")

qwrite Write workbook to an xlsx file

Description

Wrapper to openxlsx::saveWorkbook to write an Excel workbook to file

Usage

qwrite(wb, file, overwrite = FALSE)

Arguments

wb A Workbook object to write to file

file A character string naming an xlsx file

overwrite If TRUE, overwrite any existing file.



10 qxl

qxl Quickly write a tidy data frame to xlsx, with options for customization

Description

A wrapper to the openxlsx package optimized for writing tidy data frames. Includes arguments to
quickly add customization like:

• conditional formatting written as R expressions

• data validation rules based on a tidy dictionary structure

• column-specific worksheet protection

• custom column names with original variable-names hidden in the row below

Usage

qxl(
x,
file = NULL,
wb = openxlsx::createWorkbook(),
sheet = NULL,
header = NULL,
style_head = qstyle(rows = 1, textDecoration = "bold"),
hide_subhead = TRUE,
style1 = NULL,
style2 = NULL,
style3 = NULL,
style4 = NULL,
style5 = NULL,
group,
group_style = qstyle(bgFill = "#ffcccb"),
row_heights = NULL,
col_widths = "auto",
freeze_row = 1L,
freeze_col = NULL,
protect,
validate = NULL,
validate_cond = NULL,
validate_cond_all = NULL,
filter = FALSE,
filter_cols = everything(),
zoom = 120L,
date_format = "yyyy-mm-dd",
overwrite = TRUE

)



qxl 11

Arguments

x A data frame, or list of data frames

file Filename to write to. If NULL the resulting workbook is returned as an openxlsx
object of class "Workbook" rather than written to a file.

wb An openxlsx workbook object to write to. Defaults to a fresh workbook cre-
ated with openxlsx::createWorkbook. Only need to update when repeatedly
calling qxl() to add worksheets to an existing workbook.

sheet Optional character vector of worksheet names. If NULL (the default) and x is a
named list of data frames, worksheet names are taken from names(x). Other-
wise, names default to "Sheet1", "Sheet2", ...

header Optional column header. Defaults to NULL in which case column names are
taken directly from the data frame(s) in x, to create normal single-row headers.
Can alternatively pass a named character vector to set custom names as the first
row and a subheader with variable names as a hidden second row.

header = c(
mpg = "Miles per US gallon",
cyl = "Number of cylinders",
disp = "Engine displacement (cubic in.)

)

style_head Style for the header row. Set with qstyle(), or set to NULL for no header styling.
Defaults to bold text.

hide_subhead Logical indicating whether to hide the subheader (if present). Defaults to TRUE.
style1, style2, style3, style4, style5

Optional style to set using qstyle()

group Optional vector of one or more column names used to create alternating group-
ings of rows, with every other row grouping styled as per argument group_style.
See section Grouping rows.

group_style Optional style to apply to alternating groupings of rows, as specified using ar-
gument groups. Set using qstyle()

row_heights Numeric vector of row heights (in Excel units). The vector is recycled if shorter
than the number of rows in x. Defaults to NULL to use default row heights.

col_widths Vector of column widths (in Excel units). Can be numeric or character, and may
include keyword "auto" for automatic column sizing. The vector is recycled if
shorter than the number of columns in x. Defaults to "auto".
Use named vector to give column widths for specific columns, where names
represent column names of x or the keyword ".default" to set a default column
width for all columns not otherwise specified. E.g.

# specify widths for cols mpg and cyl, all others default to "auto"
col_widths <- c(mpg = 5, cyl = 10)

# specify widths for cols mpg and cyl, and explicit default for all others
col_widths <- c(mpg = 5, cyl = 10, .default = 7)



12 qxl

freeze_row Integer specifying a row to freeze at. Defaults to 1 to add a freeze below the
header row. Set to 0 or NULL to omit freezing.

freeze_col Integer specifying a column to freeze at. Defaults to NULL. Set to 0 or NULL to
omit freezing.

protect Optional function specifying how to protect worksheet components from user
modification. See function qprotect.

validate Optional specification of list-style data validation for one or more columns. Can
specify either as a list of vectors giving options for one or more column in x,
e.g.:

list(
var_x = c("Yes", "No"),
var_y = c("Small", "Medium", "Large")

)

or as a data.frame where the first column gives column names and the second
column gives corresponding options, e.g.:

data.frame(
col = c("var_x", "var_x", "var_y", "var_y", "var_y"),
val = c("Yes", "No", "Small", "Medium", "Large")

)

Validation options are written/appended to a hidden worksheet named "valid_options".
validate_cond Optional specification of conditional list-style validation, where the set of values

to be allowed in a given column depends on the corresponding value within one
or more other columns (e.g. the allowed values in column ’city’ depend on the
corresponding value in columns ’country’ and ’province’). Must be a data.frame
with at least two columns, where the first column(s) give the conditional entries
(e.g. ’country’, ’province’) and the last column gives the corresponding allowed
entries (e.g. ’city’) to be implemented as data validation. The column names in
validate_cond should match the relevant columns within x.
Note that in the current implementation validation is based on values in the
conditional column(s) of x at the time the workbook is written, and will not
update in real time if those values are later changed.

validate_cond_all

Optional vector of value(s) to always allow, independent of the value in the
conditional column (e.g. "Unknown").

filter Logical indicating whether to add column filters.
filter_cols Tidy-selection specifying which columns to filter. Only used if filter is TRUE.

Defaults to everything() to select all columns.
zoom Integer specifying initial zoom percentage. Defaults to 130.
date_format Excel format for date columns. Defaults to "yyyy-mm-dd".
overwrite Logical indicating whether to overwrite existing file. Defaults to TRUE

Value

If argument file is not specified, returns an openxlsx workbook object. Otherwise writes workbook
to file with no return.



qxl 13

Grouping rows

Given a dataset with multiple rows per group (e.g. repeated observations on a given individual), it
can sometimes be useful to uniquely stylize alternating groups to allow for quick visual distinction
of the rows belonging to any given group.

Given one or more grouping columns specified using argument groups, the qxl function arranges
the rows of the resulting worksheet by group and then applies the style group_style to the rows
in every other group, to create an alternating pattern. The alternating pattern is achieved by first
creating a group index variable called g which is assigned a value of either 1 or 0: 1 for the 1st
group, 0 for the 2nd, 1 for the 3rd, 0 for the 4th, etc. The style specified by group_style is then
applied conditionally to rows where g == 0. The grouping variable is written in column A, which is
hidden.

Examples

library(datasets)
qxl(mtcars, file = tempfile(fileext = ".xlsx"))



Index

cell-specification, 5

dplyr::everything, 3, 7

expr_to_excel, 2

lubridate::as_date, 5

mtcars, 8

openxlsx, 10
openxlsx::createStyle, 6
openxlsx::createWorkbook, 11
openxlsx::protectWorksheet, 2
openxlsx::saveWorkbook, 9

qprotect, 2, 12
qread, 4
qstyle, 6
qstyle(), 11
qwrite, 9
qxl, 10

readxl::read_excel, 4, 5
readxl_progress(), 6

tibble::as_tibble(), 6

14


	expr_to_excel
	qprotect
	qread
	qstyle
	qwrite
	qxl
	Index

