Package: redcap (via r-universe)

October 28, 2024

Title R Utilities For REDCap

Version 0.2.0

Description R utilities for interacting with the REDCap API.
License MIT + file LICENSE

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Depends R (>=2.10)

Imports httr, dplyr, tidyr, purrr, rlang, readr, lubridate, chron,
stringr, xml2, lifecycle, dbc

Suggests testthat, covr

Remotes epicentre-msf/dbc
URL https://github.com/epicentre-msf/redcap

BugReports https://github.com/epicentre-msf/redcap/issues
Repository https://epicentre-msf.r-universe.dev

RemoteUrl https://github.com/epicentre-msf/redcap

RemoteRef HEAD

RemoteSha 4d00109b129978472f9¢3d33f572baeace085330

Contents
delete_records e e e e e e e e e e e 2
fetch_database e 3
fetch_records e 7
GENETate_qUETIES v v v v e e e e e e e e e e e e e e e e e e 10
IMPOTt_TecordS o v it e e e e e e e e 12
META_ATINS .+ o v v v v o ot e e e e e e e e e e e e 13
meta_dictionary 14

https://github.com/epicentre-msf/redcap
https://github.com/epicentre-msf/redcap/issues

2 delete_records
MELA_EVENLS . . o v v v v e e e e e e e e e e e e e e 15
meta_factors L. e e 16
meta_fields s 18
meta_fOrms e 19
MEta_MAPPING . « « « o v v o e 20
Meta_Tepeating v v v e e e e e e e e e e e e e e e e 21
parse_logging L e 22
parse_xXml 23
project_dags L. e e e e e e 24
project_info L e 25
project_logging e 26
PIOJECE_USEIS . . v v vt o v e vt e e e e e e e e e e e 27
project_users_dagso e 28
project_Xmlo e e e e e e e 29
70) 11 30
TEClaSS e e e e e 31
recode_labels e 32
redcap_Version e e e e e e e e e 33
translate_logic L. e 33

Index 36

delete_records Delete records from a REDCap project

Description

Delete records from a REDCap project
Usage
delete_records(conn, records)
Arguments
conn A REDCap API connection object (created with rconn)
records Character vector of record IDs to delete
Value

An integer, the number of records successfully deleted

fetch_database 3

Examples

Not run:
conn <- rconn(
url = "https://redcap.msf.fr/api/",
token = Sys.getenv("MY_REDCAP_TOKEN")
)

delete all records associated with IDs "P@@4" and "P0@7"
delete_records(conn, records = c("P004", "P007"))

End(Not run)

fetch_database Fetch records from multiple REDCap forms, returning separate list
elements for each form

Description

Wrapper to fetch_records that’s vectorized over forms (i.e. instruments). Returns a list whose
elements are tibble-style data frames corresponding to each requested form.

Usage
fetch_database(
conn,
forms = NULL,

names_fn = function(x) x,

records = NULL,

records_omit = NULL,

id_field = TRUE,

rm_empty = TRUE,

value_labs = TRUE,

value_labs_fetch_raw = FALSE,

header_labs = FALSE,

checkbox_labs = FALSE,

use_factors = FALSE,

times_chron = TRUE,

date_range_begin = NULL,

date_range_end = NULL,

fn_dates = parse_date,

fn_dates_args = list(orders = c("Ymd”, "dmY")),
fn_datetimes = lubridate::parse_date_time,
fn_datetimes_args = list(orders = c("Ymd HMS", "Ymd HM")),
na = c("", "NA"),

dag = TRUE,

batch_size = 100L,

batch_delay =

fetch_database

0.5,

form_delay = 0.5,
double_resolve = FALSE,
double_remove = FALSE,

double_sep =

fns = NULL

Arguments

conn

forms

names_fn

records

records_omit

id_field

rm_empty

value_labs

n__mn

’

A REDCap API connection object (created with rconn)

Character vector of forms (i.e. instruments) to fetch data for. Set to NULL (the
default) to fetch all forms in the project.

Function for creating custom list element names given a vector of form names.
Defaults to an identity function in which case element names will correspond
exactly to form names.

Character vector of record IDs to fetch. Set to NULL (the default) to fetch all
record IDs corresponding to the selected form(s).

Character vector of record IDs to ignore. Set to NULL (the default) to not ig-
nore any records. If a given record ID appears in both argument records and
records_omit, argument records_omit takes precedence and that record will
not be returned.

Logical indicating whether to always include the 'record ID’ field (defined in
REDCap to be the first variable in the project codebook) in the API request,
even if it’s not specified in argument fields. Defaults to TRUE.

The record ID field is defined within the first form of a REDCap project, and so
API requests for other forms will not include the record ID field by default (un-
less it’s explicitly requested with argument fields). The id_field argument is
a shortcut to avoid having to always explicitly request the record ID field.
Logical indicating whether to remove rows for which all fields from the relevant
form(s) are missing. See section Removing empty rows. Defaults to TRUE.
Logical indicating whether to return value labels (TRUE) or raw values (FALSE)
for categorical REDCap variables (radio, dropdown, yesno, checkbox). Defaults
to TRUE to return labels.

value_labs_fetch_raw

header_labs

checkbox_labs

Logical indicating whether to request raw values for categorical REDCap vari-
ables (radio, dropdown, yesno, checkbox), which are then transformed to labels
in a separate step when value_labs = TRUE. Primarily used for troubleshooting
issues with the REDCap API returning fewer records than expected when given
certain combinations of request parameters.

Logical indicating whether to export column names as labels (TRUE) or raw vari-
able names (FALSE). Defaults to FALSE to return raw variable names.

Logical indicating whether to export checkbox labels (TRUE) or statuses (i.e.
"Unchecked" or "Checked") (FALSE). Defaults to FALSE to export statuses. Note
this argument is only relevant when value_labs is TRUE — if value_labs
is FALSE checkbox variables will always be exported as raw values (usually
"0"/M1M).

fetch_database 5

use_factors Logical indicating whether categorical REDCap variables (radio, dropdown,
yesno, checkbox) should be returned as factors. Factor levels can either be
raw values (e.g. "0"/"1") or labels (e.g. "No"/"Yes") depending on arguments
value_labs and checkbox_labs. Defaults to FALSE.

times_chron Logical indicating whether to reclass time variables using chron::times (TRUE) or
leave as character HH:MM format (FALSE). Defaults to TRUE. Note this only ap-
plies to variables of REDCap type "Time (HH:MM)", and not "Time (MM:SS)".
date_range_begin
Fetch only records created or modified after a given date-time. Use format
"YYYY-MM-DD HH:MM:SS" (e.g., "2017-01-01 00:00:00" for January 1, 2017
at midnight server time). Defaults to NULL to omit a lower time limit.

date_range_end Fetch only records created or modified before a given date-time. Use format
"YYYY-MM-DD HH:MM:SS" (e.g., "2017-01-01 00:00:00" for January 1, 2017
at midnight server time). Defaults to NULL to omit a lower time limit.

fn_dates Function to parse REDCap date variables. Defaults to parse_date, an internal
wrapper to lubridate: :parse_date_time. If date variables have been con-
verted to numeric (e.g. by writing to Excel), set to e.g. lubridate::as_date
to convert back to dates.

fn_dates_args List of arguments to pass to fn_dates. Can set to empty list 1ist () if using a
function that doesn’t take any arguments.

fn_datetimes Function to parse REDCap datetime variables. Defaults to lubridate: :parse_date_time.

fn_datetimes_args
List of arguments to pass to fn_datetimes. Can set to empty list 1ist() if
using a function that doesn’t take any arguments.

na Character vector of strings to interpret as missing values. Passed to readr::read_csv.
Defaults to c("", "NA").

dag Logical indicating whether to export the redcap_data_access_group field (if
used in the project). Defaults to TRUE.

batch_size Number of records to fetch per batch. Defaults to 100L. Set to Inf or NA to fetch
all records at once.

batch_delay Delay in seconds between fetching successive batches, to give the REDCap
server time to respond to other requests. Defaults to @. 5.

form_delay Delay in seconds between fetching successive forms, to give the REDCap server
time to respond to other requests. Defaults to @. 5.

double_resolve Logical indicating whether to resolve double-entries (i.e. records entered in
duplicate using REDCap’s Double Data Entry module), by filtering to the lowest
entry number associated with each unique record.

If a project uses double-entry, the record IDs returned by an "Export Records”
API request will be a concatenation of the normal record ID and the entry num-
ber (1 or 2), normally separated by "-" (e.g. "P0285-1"). To resolve double
entries we move the entry number portion of the ID to its own column (entry),
identify all entries belonging to the same unique record, and retain only the row
with the lowest entry number for each unique record.

6 fetch_database

Unique records are identified using the record ID column (after separating the
entry number portion), and any of the following columns when present (ac-
counting for argument header_labs): redcap_event_name (Redcap Event), red-
cap_repeat_instrument (Repeat Instrument), redcap_repeat_instance (Repeat In-
stance).

double_remove Logical indicating whether to remove double-entries (i.e. records entered in
duplicate using REDCap’s Double Data Entry module), by filtering out records
where the record ID field contains pattern double_sep (see next argument), so
that only merged records remain.

double_sep If double_resolve is TRUE, the string separator used to split the record ID field
into the record ID and entry number. Defaults to "-".

fns Optional list of one or more functions to apply to each list element (i.e. each
form). Could be used e.g. to filter out record IDs from test entries, create
derived variables, etc. Each function should take a data frame returned by
fetch_records as its first argument.

Value

A list of tibble-style data frames corresponding to each of the requested forms.

Removing empty rows

Depending on the database design, an "Export Records" API request can sometimes return empty
rows, representing forms for which no data has been collected. For example, if forms F1 and F2
are part of the same event, and participant "POO1" has form data for F2 but not F1, an API request
for F1 will include a row for participant "PO01" where all F1-specific fields are empty.

If argument rm_empty is TRUE (the default), fetch_records() will filter out such rows. The
check for empty rows is based only on fields that are specific to the form(s) specified in argu-
ment forms — i.e. it excludes the record ID field, and generic fields like redcap_event_name,
redcap_data_access_group, etc. The check for empty rows also accounts for checkbox fields,
which, if argument checkbox_labs is FALSE, will be set to "Unchecked" in an empty form (rather
than missing per se).

Examples

Not run:

conn <- rconn(
url = "https://redcap.msf.fr/api/",
token = Sys.getenv(”"MY_REDCAP_TOKEN")

)
fetch_database(
conn,
forms = c("my_form1"”, "my_form2", "my_form3")

)

use a custom fn to format the 'participant_id' column of each form
the function must take a data frame as its first argument
format_ids <- function(x) {

fetch_records 7

x$participant_id <- toupper(x$participant_id)
x$participant_id <- gsub("[*[:alnum:]1]+", "_", x$participant_id)
X

}

fetch_database(
conn,
forms = c("my_form1”, "my_form2", "my_form3"),
fns = list(format_ids)

)

End(Not run)

fetch_records Fetch records for a REDCap project

Description

Execute an "Export Records"” API request to fetch a tibble-style data frame containing records for
one or more REDCap instruments.

Usage
fetch_records(
conn,
forms = NULL,

events = NULL,

records = NULL,

records_omit = NULL,

fields = NULL,

id_field = TRUE,

rm_empty = TRUE,

value_labs = TRUE,

value_labs_fetch_raw = FALSE,

header_labs = FALSE,

checkbox_labs = FALSE,

use_factors = FALSE,

times_chron = TRUE,

date_range_begin = NULL,

date_range_end = NULL,

fn_dates = parse_date,

fn_dates_args = list(orders = c("Ymd”, "dmY")),
fn_datetimes = lubridate::parse_date_time,
fn_datetimes_args = list(orders = c("Ymd HMS", "Ymd HM")),
na = c("", "NA"),

dag = TRUE,

batch_size = 100L,

batch_delay =

fetch_records

0.5,

double_resolve = FALSE,

double_remove
double_sep =

Arguments

conn

forms
events
records

records_omit

fields

id_field

rm_empty

value_labs

= FALSE,

n__mn

A REDCap API connection object (created with rconn)

Character vector of forms (i.e. instruments) to fetch data for. Set to NULL (the
default) to fetch all forms in the project.

Character vector of events to fetch. Must correspond to the selected forms. Set
to NULL (the default) to fetch all events corresponding to the selected form(s).

Character vector of record IDs to fetch. Set to NULL (the default) to fetch all
record IDs corresponding to the selected form(s).

Character vector of record IDs to ignore. Set to NULL (the default) to not ig-
nore any records. If a given record ID appears in both argument records and
records_omit, argument records_omit takes precedence and that record will
not be returned.

Character vector of fields (i.e. variables) to fetch. Set to NULL (the default) to
fetch all fields corresponding to the selected form(s).

Logical indicating whether to always include the 'record ID’ field (defined in
REDCap to be the first variable in the project codebook) in the API request,
even if it’s not specified in argument fields. Defaults to TRUE.

The record ID field is defined within the first form of a REDCap project, and so
API requests for other forms will not include the record ID field by default (un-
less it’s explicitly requested with argument fields). The id_field argument is
a shortcut to avoid having to always explicitly request the record ID field.

Logical indicating whether to remove rows for which all fields from the relevant
form(s) are missing. See section Removing empty rows. Defaults to TRUE.

Logical indicating whether to return value labels (TRUE) or raw values (FALSE)
for categorical REDCap variables (radio, dropdown, yesno, checkbox). Defaults
to TRUE to return labels.

value_labs_fetch_raw

header_labs

checkbox_labs

Logical indicating whether to request raw values for categorical REDCap vari-
ables (radio, dropdown, yesno, checkbox), which are then transformed to labels
in a separate step when value_labs = TRUE. Primarily used for troubleshooting
issues with the REDCap API returning fewer records than expected when given
certain combinations of request parameters.

Logical indicating whether to export column names as labels (TRUE) or raw vari-
able names (FALSE). Defaults to FALSE to return raw variable names.

Logical indicating whether to export checkbox labels (TRUE) or statuses (i.e.
"Unchecked" or "Checked") (FALSE). Defaults to FALSE to export statuses. Note
this argument is only relevant when value_labs is TRUE — if value_labs
is FALSE checkbox variables will always be exported as raw values (usually
"0"/M1M).

fetch_records 9

use_factors Logical indicating whether categorical REDCap variables (radio, dropdown,
yesno, checkbox) should be returned as factors. Factor levels can either be
raw values (e.g. "0"/"1") or labels (e.g. "No"/"Yes") depending on arguments
value_labs and checkbox_labs. Defaults to FALSE.

times_chron Logical indicating whether to reclass time variables using chron::times (TRUE) or
leave as character HH:MM format (FALSE). Defaults to TRUE. Note this only ap-
plies to variables of REDCap type "Time (HH:MM)", and not "Time (MM:SS)".

date_range_begin
Fetch only records created or modified after a given date-time. Use format
"YYYY-MM-DD HH:MM:SS" (e.g., "2017-01-01 00:00:00" for January 1, 2017
at midnight server time). Defaults to NULL to omit a lower time limit.

date_range_end Fetch only records created or modified before a given date-time. Use format
"YYYY-MM-DD HH:MM:SS" (e.g., "2017-01-01 00:00:00" for January 1, 2017
at midnight server time). Defaults to NULL to omit a lower time limit.

fn_dates Function to parse REDCap date variables. Defaults to parse_date, an internal
wrapper to lubridate: :parse_date_time. If date variables have been con-
verted to numeric (e.g. by writing to Excel), set to e.g. lubridate::as_date
to convert back to dates.

fn_dates_args List of arguments to pass to fn_dates. Can set to empty list 1ist() if using a
function that doesn’t take any arguments.

fn_datetimes Function to parse REDCap datetime variables. Defaults to lubridate: :parse_date_time.

fn_datetimes_args
List of arguments to pass to fn_datetimes. Can set to empty list 1ist() if
using a function that doesn’t take any arguments.

na Character vector of strings to interpret as missing values. Passed to readr::read_csv.
Defaults to c("", "NA").

dag Logical indicating whether to export the redcap_data_access_group field (if
used in the project). Defaults to TRUE.

batch_size Number of records to fetch per batch. Defaults to 100L. Set to Inf or NA to fetch

all records at once.

batch_delay Delay in seconds between fetching successive batches, to give the REDCap
server time to respond to other requests. Defaults to @. 5.

double_resolve Logical indicating whether to resolve double-entries (i.e. records entered in
duplicate using REDCap’s Double Data Entry module), by filtering to the lowest
entry number associated with each unique record.
If a project uses double-entry, the record IDs returned by an "Export Records”
API request will be a concatenation of the normal record ID and the entry num-
ber (1 or 2), normally separated by "-" (e.g. "P0285-1"). To resolve double
entries we move the entry number portion of the ID to its own column (entry),
identify all entries belonging to the same unique record, and retain only the row
with the lowest entry number for each unique record.
Unique records are identified using the record ID column (after separating the
entry number portion), and any of the following columns when present (ac-
counting for argument header_labs): redcap_event_name (Redcap Event), red-
cap_repeat_instrument (Repeat Instrument), redcap_repeat_instance (Repeat In-
stance).

10 generate_queries

double_remove Logical indicating whether to remove double-entries (i.e. records entered in
duplicate using REDCap’s Double Data Entry module), by filtering out records
where the record ID field contains pattern double_sep (see next argument), so
that only merged records remain.

double_sep If double_resolve is TRUE, the string separator used to split the record ID field

non

into the record ID and entry number. Defaults to "-".

Value

A tibble-style data frame containing the requested records

Removing empty rows

Depending on the database design, an "Export Records" API request can sometimes return empty
rows, representing forms for which no data has been collected. For example, if forms F1 and F2
are part of the same event, and participant "POO1" has form data for F2 but not F1, an API request
for F1 will include a row for participant "P001" where all F1-specific fields are empty.

If argument rm_empty is TRUE (the default), fetch_records() will filter out such rows. The
check for empty rows is based only on fields that are specific to the form(s) specified in argu-
ment forms — i.e. it excludes the record ID field, and generic fields like redcap_event_name,
redcap_data_access_group, etc. The check for empty rows also accounts for checkbox fields,
which, if argument checkbox_labs is FALSE, will be set to "Unchecked" in an empty form (rather
than missing per se).

Examples

Not run:
conn <- rconn(
url = "https://redcap.msf.fr/api/”,
token = Sys.getenv("MY_REDCAP_TOKEN")
)

fetch_records(conn, forms = "my_form")

End(Not run)

generate_queries Generate data validation queries for a REDCap project based on
branching logic specified in the project codebook

Description

Generates two types of data validation queries using the project codebook (see meta_dictionary)
and translate_logic:

1. Field missing: Branching logic evaluates to TRUE (if specified), but field is missing. By
default only applies to required fields (required_field == "y") (can modify with argument
non_required).

generate_queries 11

Usage

2. Field not missing: Branching logic evaluates to FALSE but field is not missing. Applies to any
field with branching logic.

generate_queries(

conn,
forms = NULL,
dict = meta_dictionary(conn, forms = forms, expand_checkbox = FALSE),
lang = "en”,

query_types = "both",
non_required = FALSE,
drop_redundant = FALSE,
field_nchar_max = 8oL,

on_error = "warn”
)
Arguments

conn A REDCap API connection object (created with rconn)

forms Character vector of forms (i.e. instruments) to include. Set to NULL (the default)
to generate queries for all forms in the project.

dict Metadata dictionary. By default is fetched automatically with meta_dictionary,
but it’s included as an argument here to allow the user to modify the dictionary
before passing to generate_queries (e.g. to correct bugs in branching logic).
If passing a modified version, make sure it is initially fetched with argument
expand_checkbox = FALSE.

lang Query language, either English ("en") or French ("fr"). Defaults to "en".

query_types Which type of queries to generate (see Description above). Options are "miss-

"non

ing", "not missing", or "both". Defaults to "both".

non_required Logical indicating whether to include non-required fields in queries of type

"Field missing". Defaults to FALSE.

drop_redundant Logical indicating whether to simplify expressions by removing redundant com-

ponents from expressions that test both for equality and inequality with the same
variable. E.g.:
var == "X" & var !="" becomes var == "X"

field_nchar_max

Integer indicating the maximum number of characters to allow in field name
labels before they are truncated and appended with "...". Defaults to 8OL.

on_error ‘What to do if one or more elements of statements can’t be translated into valid R

Value

expressions? Options are "ignore" (return NA for relevant elements), "warn" (re-
turn NA for relevant elements and give warning), or "fail" (throw error). Defaults
to "warn".

A tibble-style data frame specifying queries, with the following 7 columns:

12

import_records

query_id Unique query identifier based on form name and integer sequence

field_name Field name (from REDCap dictionary, see meta_dictionary)

form_name Form name (from REDCap dictionary)

required Is it a required field in REDCap dictionary ("y" or <NA>) ?

description Description of query (e.g. "Missing: [Signed consent forms?]")

suggestion Suggestion for query resolution. A human-readable translation of query expression
(e.g. If [Is the participant 18 years or older?] is "Yes", item [Signed consent forms?] should
not be missing)

branching_logic Branching logic for given field (from REDCap dictionary)

query R-style query expression (can be evaluated with queryr: :query)

import_records

Import records into a REDCap project

Description

Import records into a REDCap project

Usage
import_records(
conn,
data,
type = c("flat”, "eav"),
overwrite = "normal”,
return = "count”
)
Arguments
conn A REDCap API connection object (created with rconn)
data A data.frame containing record data to import into REDCap
type One of:

* "flat": data in wide-form with one record per row (default)

* "eav": data in long-form with one row per participant/instance/field (data
should have columns "record", "field_name", and "value", and if longitudi-
nal then also "redcap_event_name" and "redcap_repeat_instance")

overwrite Overwrite behaviour. Either "normal” to prevent missing values from overwrit-
ing data, or "overwrite" to allow data to be overwritten with missing values.
Defaults to "normal".

return What to return. Use "count" to return a count of imported records, "ids" to return

a vector of the IDs that were imported, or "nothing" to return nothing. Defaults
to "count".

meta_arms 13

Value

Depends on argument return. Either a count of imported records, a vector of record IDs, or
nothing.

meta_arms Export REDCap project arms

Description

Execute an "Export Arms" API request to fetch the "arms" (number and name) associated with a
REDCap project.

Usage

meta_arms(conn)

Arguments

conn A REDCap API connection object (created with rconn)

Value

A tibble-style data frame with 2 columns:

e arm_num

®* name

Examples

Not run:

conn <- rconn(
url = "https://redcap.msf.fr/api/",
token = Sys.getenv("MY_REDCAP_TOKEN")

)

meta_arms(conn)

End(Not run)

14 meta_dictionary

meta_dictionary Fetch variable dictionary for a REDCap project

Description

Execute an "Export Metadata (Data Dictionary)" API request to fetch a tibble-style data frame
containing the project codebook (field names, types, labels, choices, validation, etc.).

Usage
meta_dictionary(
conn,
forms = NULL,

expand_checkbox = TRUE,
add_complete = FALSE,

cols_omit = c("section_header”, "custom_alignment”, "question_number"”,
"matrix_group_name"”, "matrix_ranking")
)
Arguments
conn A REDCap API connection object (created with rconn)
forms Character vector of forms (i.e. instruments) to include in the return. Set to NULL

(the default) to return dictionary entries for all forms in the project.

expand_checkbox
Logical indicating whether to expand checkbox variables. Defaults to TRUE.

Unlike an "Export Records" API request (see fetch_records), which returns 1
column for each checkbox option, an "Export Metadata (Data Dictionary)" re-
quest returns a single row for each field — including checkbox fields. Thus, the
field_name and field_label entries for checkbox variables in the data dictio-
nary will never exactly match the respective column names or values returned
by fetch_records.

When expand_checkbox is TRUE, rows for checkbox fields are expanded to 1
row per checkbox option, so that dictionary entries for field_name, field_label,
and choices will always match the relevant entries returned by fetch_records.

add_complete Logical indicating whether to add "{form}_complete" fields to the dictionary,
one for each form included in the return. These will be of field_type "radio"
with possible choices "0, Incomplete | 1, Unverified | 2, Complete". Defaults to
FALSE.

cols_omit Character vector of dictionary columns to omit from the return for brevity. Set
to NULL to return all columns.

meta_events 15

Value

A tibble-style data frame containing the project dictionary. Note that some of the returned column
names are shortened versions of the original column names returned by the API:

Original Returned
select_choices_or_calculations choices
text_validation_type_or_show_slider_number validation
text_validation_min validation_min
text_validation_max validation_max
Examples
Not run:

conn <- rconn(
url = "https://redcap.msf.fr/api/",
token = Sys.getenv("MY_REDCAP_TOKEN")
)

meta_dictionary(conn)

End(Not run)

meta_events Fetch event names and labels for a REDCap project

Description

Execute an "Export Events" API request to fetch a tibble-style data frame containing event names
and labels. Note that this request type is not available for ’classic projects’, from which event details
cannot be exported.

Usage
meta_events(conn, on_error = "fail")
Arguments
conn A REDCap API connection object (created with rconn)
on_error How to handle errors returned by the API (e.g. events cannot be exported for

classic projects). Set to "fail" to halt execution and return the API error message,
or "null" to ignore the error and return NULL. Defaults to "fail".

16 meta_factors

Value
A tibble-style data frame with 7 columns:

e event_name

e arm_num

e day_offset

e offset_min

e offset_max

* unique_event_name

e custom_event_label

Examples

Not run:
conn <- rconn(
url = "https://redcap.msf.fr/api/",
token = Sys.getenv(”"MY_REDCAP_TOKEN")
)

meta_events(conn)

End(Not run)

meta_factors Fetch field option values and labels for factor-type variables in a RED-
Cap project

Description

Converts field options and labels from the metadata dictionary (see meta_dictionary), which has
1 row per variable and field options in compact string-form, to long form with 1 row per option.
E.g.:

Dictionary version (1 row per variable):

field_name form_name field_type choices
consented enrollment radio 0,No |1, Yes

Long format (1 row per option):

field_name form_name field_type value label
consented enrollment radio 0 No
consented enrollment radio 1 Yes

meta_factors

Usage
meta_factors(
conn,
forms = NULL,

17

expand_checkbox = TRUE,

add_complete = FALSE,
types = c("radio”, "yesno"”, "dropdown", "checkbox")
)
Arguments
conn A REDCap API connection object (created with rconn)
forms Character vector of forms (i.e. instruments) to include. Set to NULL (the default)

expand_checkbox

add_complete

types

Value

to return field options for all forms in the project.

Logical indicating whether to expand checkbox variables. Defaults to TRUE.

Unlike an "Export Records" API request (see fetch_records), which returns 1
column for each checkbox option, an "Export Metadata (Data Dictionary)" re-
quest returns a single row for each field — including checkbox fields. Thus, the
field_name and field_label entries for checkbox variables in the data dictio-
nary will never exactly match the respective column names or values returned
by fetch_records.

When expand_checkbox is TRUE, rows for checkbox fields are expanded to 1
row per checkbox option, so that dictionary entries for field_name, field_label,
and choices will always match the relevant entries returned by fetch_records.

Logical indicating whether to add "{form}_complete" fields to the dictionary,
one for each form included in the return. These will be of field_type "radio"
with possible choices "0, Incomplete | 1, Unverified | 2, Complete". Defaults to
FALSE.

Character vector of variable types to return field options for.
Defaults to c("radio”, "yesno", "dropdown”, "checkbox").

A tibble-style data frame with 6 columns:

¢ field_name

e form_name

field_type
field_label
* value
label

See Also

meta_dictionary

18 meta_fields

Examples

Not run:

conn <- rconn(
url = "https://redcap.msf.fr/api/",
token = Sys.getenv("MY_REDCAP_TOKEN")

)

meta_factors(conn)

End(Not run)

meta_fields Fetch exported field names for a REDCap project

Description

Execute an "Export List of Export Field Names" API request to fetch a tibble-style data frame con-
taining field (i.e. variable) names as listed in the project codebook (column original_field_name)
and the corresponding exported variable name(s) (column export_field_name).

Original and exported field names will be identical except in the case of checkbox-type variables.
A given checkbox variable (e.g. "patient_status") will have a single entry in the codebook (i.e.
field_name = "patient_status"), but will be exported as multiple variables — one for each possible
choice value.

original_field_name choice_value export_field_name

patient_status 1 patient_status___1
patient_status 2 patient_status___ 2
patient_status 3 patient_status___3
patient_status 88 patient_status___ 88

Usage

meta_fields(conn)

Arguments

conn A REDCap API connection object (created with rconn)

Value
A tibble-style data frame with 3 columns:
e original_field_name

e choice_value

e export_field_name

meta_forms 19

Examples

Not run:

conn <- rconn(
url = "https://redcap.msf.fr/api/",
token = Sys.getenv("MY_REDCAP_TOKEN")

)
meta_fields(conn)

End(Not run)

meta_forms Fetch instrument names and labels for a REDCap project

Description

Execute an "Export Instrument (Data Entry Forms)" API request to fetch a tibble-style data frame
containing instrument names and labels.

Usage

meta_forms(conn)

Arguments

conn A REDCap API connection object (created with rconn)

Value
A tibble-style data frame with 2 columns:

e instrument_name

e instrument_label

Examples

Not run:
conn <- rconn(
url = "https://redcap.msf.fr/api/",
token = Sys.getenv("MY_REDCAP_TOKEN")
)

meta_forms(conn)

End(Not run)

20 meta_mapping

meta_mapping Fetch instrument-event mappings for a REDCap project

Description

Execute an "Export Instrument-Event Mappings" API request to fetch a tibble-style data frame
containing the mapping between instruments and events. Note that this request type is not available
for ’classic projects’, from which event details cannot be exported.

Usage
meta_mapping(conn, on_error = "fail")
Arguments
conn A REDCap API connection object (created with rconn)
on_error How to handle errors returned by the API (e.g. events cannot be exported for
classic projects). Set to "fail" to halt execution and return the API error message,
or "null" to ignore the error and return NULL. Defaults to "fail".
Value

A tibble-style data frame with 3 columns:

e arm_num
* unique_event_name

e form

Examples

Not run:

conn <- rconn(
url = "https://redcap.msf.fr/api/",
token = Sys.getenv("MY_REDCAP_TOKEN")

)
meta_mapping(conn)

End(Not run)

meta_repeating 21

meta_repeating Fetch repeating instrument names and labels for a REDCap project

Description

Execute an "Export Repeating Instruments and Events" API request to fetch a tibble-style data
frame containing repeating instrument names and labels.

Usage
meta_repeating(conn, on_error = "fail")
Arguments
conn A REDCap API connection object (created with rconn)
on_error How to handle errors returned by the API (e.g. events cannot be exported for
classic projects). Set to "fail" to halt execution and return the API error message,
or "null" to ignore the error and return NULL. Defaults to "fail".
Value

A tibble-style data frame with 2 columns:

e instrument_name

e instrument_label

Examples

Not run:

conn <- rconn(
url = "https://redcap.msf.fr/api/",
token = Sys.getenv("MY_REDCAP_TOKEN")

)

meta_repeating(conn)

End(Not run)

22

parse_logging

parse_logging Convert a REDCap project log file to a tidy data frame

Description

[Experimental]

REDCap project log files have a complicated format where multiple types of information are con-
tained in a single column. For example the column action contains the relevant record ID, the type
of action that was taken (e.g. Updated / Created / Deleted), and sometimes further details about the
source of the action (e.g. API/Import/ Automatic field calculation). The details column contains
a string of variable/value combinations describing any changes (e.g. "varl =’0’, var2 =’1’, var3(1)
= checked"), and may also contain the relevant repeat instance number (e.g. "[instance = 3]").

The parse_logging() function tidies up the log file by splitting the record ID, action, action type,
and repeat instance into separate columns. Optionally, the string of variable/value changes in the
details column may be further transformed to long format to yield a single row for each combi-
nation of variable and value.

Note that this function only deals with log entries of type Created / Deleted / Updated Record. All
other log entries (e.g. Data Export, Manage/Design, Edited Role, User Assigned to Role) will be
filtered out.

Usage

parse_logging(x, format_long = FALSE, dict = NULL)

Arguments
X REDCap project log file (data frame), e.g. returned by project_logging
format_long Logical indicating whether to transform the log file to long format, with one row
per variable-value combination. Defaults to FALSE.
dict A REDCap metadata dictionary (data frame), e.g. returned by meta_dictionary.
Only needed when argument format_long is TRUE.
Value

A tibble-style data frame with 8 columns:

rowid Row number based on original log file. There may be gaps for rows that have been excluded
from the output because they reflected an action type other than create / delete / update.

timestamp unchanged from original log file
username unchanged from original log file

action One of "Created Record", "Deleted Record", or "Updated Record", extracted from original
details column

action_type Parenthetical details, if any, extracted from original action column (e.g. "(APID)",

"(import)", "(Auto calculation)")

parse_xml 23

record_id Record ID, extracted from original action column

redcap_repeat_instance Instance number (integer), extracted from original details column.
Note that 1st instances are not explicitly specified in the log file and will appear as NA

details String of variable value pairs (e.g. "varl =’0’, var2 = ’1’, var3(1) = checked"), reflecting
the data that was modified

If argument format_long is TRUE the details column will be replaced with three other columns:

form_name Form name, joined from metadata dictionary based on variable field_name. Will be
<NA> in cases where field name has been changed or removed and therefore doesn’t appear in
the dictionary, or for fields not associated with a specific form like redcap_data_access_group.

field_name Field name, extracted from original details column

value Value, extracted from original details column

Examples

Not run:

conn <- rconn(
url = "https://redcap.msf.fr/api/",
token = Sys.getenv("MY_REDCAP_TOKEN")

)
parse_logging(project_logging(conn))

End(Not run)

parse_xml Convert a REDCap project XML file to a tidy data frame of project
records

Description

Extract records from a REDCap project XML file (e.g. returned by project_xml) and assemble
into a tidy long-form data frame, with one row for each combination of record x field x event x

instance.

Usage

parse_xml(x)

Arguments

X A REDCap project XML obect of class xml_document, e.g. returned by project_xml

24 project_dags

Value

A tibble-style data frame with 6 columns:

* record_id

e form

* redcap_event

e redcap_repeat_instance
e field

e value

Examples

Not run:

conn <- rconn(
url = "https://redcap.msf.fr/api/",
token = Sys.getenv("MY_REDCAP_TOKEN")

)

parse_xml(project_xml(conn))

End(Not run)

project_dags Export REDCap user information

Description

Execute an "Export Data Access Groups (DAGs)" API request to fetch the DAGs (labels and code
names) associated with a REDCap project.
Usage

project_dags(conn)

Arguments

conn A REDCap API connection object (created with rconn)

Value

A tibble-style data frame with 2 columns:

* data_access_group_name

* unique_group_name

project_info 25

Examples

Not run:

conn <- rconn(
url = "https://redcap.msf.fr/api/",
token = Sys.getenv("MY_REDCAP_TOKEN")

)
project_dags(conn)

End(Not run)

project_info Export REDCap Project information

Description

Execute an "Export Project Info" API request to fetch project-related details (e.g. title, creation
time, production status, language, etc.) corresponding to a REDCap project.

Usage

project_info(conn)

Arguments

conn A REDCap API connection object (created with rconn)

Value

A tibble-style data frame containing the columns returned by an "Export Project Info" API request

Examples

Not run:

conn <- rconn(
url = "https://redcap.msf.fr/api/",
token = Sys.getenv("MY_REDCAP_TOKEN")

)
project_info(conn)

End(Not run)

26 project_logging

project_logging Export project logging (audit trail) for a REDCap project

Description

Execute an "Export Logging" API request to export the logging (audit trail) of all changes made
to the project, including data exports, data changes, project metadata changes, modification of user

rights, etc.
Usage
project_logging(
conn,
type = NULL,
user = NULL,

record = NULL,

time_start = NULL,
time_end = NULL,
timestamp_to_posix = TRUE

Arguments

conn A REDCap API connection object (created with rconn)

type Type of logging to return. Defaults to NULL to return all types. Specific logging
types include:
* "export": Data export
* "manage": Manage/Design
* "user": User or role created-updated-deleted
* "record": Record created-updated-deleted
* "record_add": Record created (only)
* "record_edit": Record updated (only)
* "record_delete": Record deleted (only)
* "lock_record": Record locking & e-signatures
* "page_view": Page Views
user REDCap username to fetch logs for. Defaults to NULL to fetch logs relating to
all users. Note that, in the current API version (10.8.5), it’s not possible to pass

a character vector with multiple usernames (i.e. one user per request, or NULL
for all).

record Record ID to fetch logs for. Defaults to NULL to fetch logs relating to all record
IDs. Note that, in the current API version (10.8.5), it’s not possible to pass a
character vector with multiple record IDs (i.e. one record per request, or NULL
for all).

time_start Fetch logs from after a given date-time. Use format "YYYY-MM-DD HH:MM".
Defaults to NULL to omit a lower time limit.

project_users 27

time_end Fetch logs from before a given date-time. Use format "YYYY-MM-DD HH:MM".
Defaults to NULL to omit an upper time limit.

timestamp_to_posix
Logical indicating whether to convert the timestamp column to class POSIXct
using lubridate: :as_datetime. Defaults to TRUE.

Value

A tibble-style data frame with 4 columns:

e timestamp
e username
* actions

e details

Examples

Not run:
conn <- rconn(
url = "https://redcap.msf.fr/api/",
token = Sys.getenv("MY_REDCAP_TOKEN")
)

project_logging(conn)

End(Not run)

project_users Export REDCap user information

Description
Execute an "Export Users" API request to fetch user-related details (e.g. username, email, access
permissions, etc.) corresponding to a REDCap project.

Usage

project_users(conn)

Arguments

conn A REDCap API connection object (created with rconn)

Value

A tibble-style data frame containing the columns returned by an "Export Users" API request

28 project_users_dags

Examples

Not run:

conn <- rconn(
url = "https://redcap.msf.fr/api/",
token = Sys.getenv("MY_REDCAP_TOKEN")

)

project_users(conn)

End(Not run)

project_users_dags Export REDCap mapping between users and Data Access Groups
(DAGs)

Description

Execute an "Export User-DAG Assignments" API request to fetch the mapping between users and
Data Access Groups (DAGs) associated with a REDCap project.

Usage

project_users_dags(conn)

Arguments

conn A REDCap API connection object (created with rconn)

Value
A tibble-style data frame with 2 columns:

¢ username

* redcap_data_access_group

Examples

Not run:

conn <- rconn(
url = "https://redcap.msf.fr/api/",
token = Sys.getenv("MY_REDCAP_TOKEN")

)
project_users_dags(conn)

End(Not run)

project_xml

29

project_xml

Export REDCap Project XML file

Description

Execute an "Export Entire Project as REDCap XML File" API request to fetch all metadata (and
optionally also data records) corresponding to a REDCap project.

Usage

project_xml(
conn,

meta_only = FALSE,
records = NULL,
fields = NULL,
events = NULL,

filter_logic
export_dag =

= NULL,
FALSE,

export_survey = FALSE,

export_files

Arguments

conn
meta_only
records
fields

events
filter_logic
export_dag
export_survey

export_files

Value

= FALSE

A REDCap API connection object (created with rconn)

Logical indicating whether to fetch only the project metadata (if TRUE) or both
the metadata and data records (if FALSE). Defaults to FALSE to fetch both meta-
data and data.

Optional character vector of specific record IDs to fetch record data for. Only
used when meta_only = FALSE.

Optional character vector of specific fields to fetch record data for. Only used
when meta_only = FALSE.

Optional character vector of specific events to fetch record data for. Only used
when meta_only = FALSE.

Optional character string containing a REDCap-style expression used to filter
records returned by the API (e.g. "[age] > 30")

Logical indicating whether to export the redcap_data_access_group field. De-
faults to FALSE.

Logical indicating whether to export survey identifier or timestamp fields, if
surveys are used in the project. Defaults to FALSE.

Logical indicating whether to export uploaded files. Note this may lead to large
exports. Defaults to FALSE.

An object of class xml_document

30 rconn

Examples

Not run:

conn <- rconn(
url = "https://redcap.msf.fr/api/",
token = Sys.getenv("MY_REDCAP_TOKEN")

)
project_xml(conn)

End(Not run)

rconn Connection to a REDCap Database

Description

Creates an object of class "rconn" containing the URL and token used to access a REDCap project
APL

Usage

rconn(url, token, config = httr::config())

Arguments
url URL for a REDCap database API
token REDCap project API token (good practice to set using an environmental vari-
able, e.g. with Sys.getenv).
config Optional configuration settings passed to httr: :POST. Defaults to httr: :config().
Value

An object of class "rconn", to be passed as the first argument to most other redcap functions.

Examples

conn <- rconn(
url = "https://redcap.msf.fr/api/",
token = Sys.getenv("MY_REDCAP_TOKEN")
)

reclass 31

reclass Reclass columns of a data frame to match classes specified in a meta-
data dictionary

Description

Reclass columns of a data frame to match classes specified in a metadata dictionary

Usage

reclass(
X,
dict,
use_factors = FALSE,
value_labs = TRUE,
header_labs = FALSE,
times_chron = TRUE,
fn_dates = parse_date,
fn_dates_args = list(orders = c("Ymd”, "dmY")),
fn_datetimes = lubridate::parse_date_time,
fn_datetimes_args = list(orders = c(”"Ymd HMS", "Ymd HM"))

)
Arguments
X A data frame representing a REDCap form
dict A metadata dictionary
use_factors Logical indicating whether categorical REDCap variables (radio, dropdown,

yesno, checkbox) should be returned as factors. Factor levels can either be
raw values (e.g. "0"/"1") or labels (e.g. "No"/"Yes") depending on arguments
value_labs and checkbox_labs. Defaults to FALSE.

value_labs Logical indicating whether to return value labels (TRUE) or raw values (FALSE)
for categorical REDCap variables (radio, dropdown, yesno, checkbox). Defaults
to TRUE to return labels.

header_labs Logical indicating whether to export column names as labels (TRUE) or raw vari-
able names (FALSE). Defaults to FALSE to return raw variable names.

times_chron Logical indicating whether to reclass time variables using chron::times (TRUE) or
leave as character HH:MM format (FALSE). Defaults to TRUE. Note this only ap-
plies to variables of REDCap type "Time (HH:MM)", and not "Time (MM:SS)".

fn_dates Function to parse REDCap date variables. Defaults to parse_date, an internal
wrapper to lubridate: :parse_date_time. If date variables have been con-
verted to numeric (e.g. by writing to Excel), set to e.g. lubridate::as_date
to convert back to dates.

fn_dates_args List of arguments to pass to fn_dates. Can set to empty list 1ist() if using a
function that doesn’t take any arguments.

32 recode_labels

fn_datetimes Function to parse REDCap datetime variables. Defaults to lubridate: :parse_date_time.

fn_datetimes_args
List of arguments to pass to fn_datetimes. Can set to empty list 1ist() if
using a function that doesn’t take any arguments.

recode_labels Convert between values and labels for factor-type variables (e.g.
yes/no, radio, dropdown, checkbox)

Description

Convert between values and labels for factor-type variables (e.g. yes/no, radio, dropdown, check-
box)

Usage
recode_labels(
X ’
conn,
dict = redcap::meta_dictionary(conn, add_complete = TRUE),
convert_to = c("labels"”, "values"”),
types = c("radio”, "yesno"”, "dropdown", "checkbox"),
header_labs = FALSE
)
Arguments
X Data frame representing a REDCap form (e.g. from a previous export using
fetch_records)
conn A REDCap API connection object (created with rconn)
dict REDCap metadata dictionary. Defaults to fetching the current version with
meta_dictionary
convert_to Convert values to labels ("labels") or labels to values ("values")
types Types of REDCap variables to convert, based on column "field_type" in the
metadata dictionary. Defaults to c("radio”, "yesno”, "dropdown”, "checkbox").
header_labs Logical indicating whether column names of x are labels (TRUE) or raw variable

names (FALSE). Default assumes header has raw variable names (i.e. FALSE).

redcap_version 33

redcap_version Fetch the REDCap database version used for a particular project

Description

Execute an "Export REDCap version" API request

Usage

redcap_version(conn)

Arguments

conn A REDCap API connection object (created with rconn)

Value

A character string

Examples

Not run:
conn <- rconn(
url = "https://redcap.msf.fr/api/",
token = Sys.getenv("MY_REDCAP_TOKEN")
)

redcap_version(conn)

End(Not run)

translate_logic Translate REDCap branching logic into R expressions

Description

Translate REDCap branching logic into expressions evaluable in R. E.g.

Translation step Example expression

0. Initial REDCap logic [over_18]="1" and [signed_consent]<>”
1. Translate to R over_18=="1" & signed_consent !="

2. (Optional) Swap values/labels over_18 =="Yes’ & signed_consent !="

3. (Optional) Use is.na over_18 =="Yes’ & !is.na(signed_consent)

4. (Optional) Use %in% over_18 %in% ’Yes’ & !is.na(signed_consent)

34 translate_logic

Usage

translate_logic(
X,
use_value_labs = TRUE,
use_header_labs = FALSE,
use_is_na = TRUE,
use_in = TRUE,
drop_redundant = FALSE,
field_nchar_max = 8oL,
meta_factors = NULL,
meta_dictionary = NULL,

on_error = "warn”
)
Arguments
X A character vector of REDCap branching logic statements

use_value_labs Logical indicating whether to replace factor option values with labels (based on
the mapping defined in meta_factors). E.g.:
y=="1" becomes y == 'Yes'

use_header_labs
Logical indicating whether to use labels instead of variable names as column
names (based on the mapping defined in meta_dictionary). E.g.:
age >= 18 becomes "Participant's age"” >=18

use_is_na Logical indicating whether to replace REDCap-style tests for missingness with
is.na. E.g.:
y =="" becomes is.na(y)
y !'=""becomes !is.na(y)

use_in Logical indicating whether to replace instances of == and != associated with
factor-type variables (as defined in meta_factors) with %in%. E.g.:
y == 'Yes' becomes y %in% 'Yes'
y !'="'Yes' becomes !y %in% 'Yes'

drop_redundant Logical indicating whether to simplify expressions by removing redundant com-
ponents from expressions that test both for equality and inequality with the same
variable. E.g.:
var == "X" & var !="" becomes var == "X"

field_nchar_max
Integer indicating the maximum number of characters to allow in field name
labels before they are truncated and appended with "...". Defaults to 80L.

meta_factors A data frame containing variable names (column field_name) and correspond-
ing values (column value) and labels (column label) for factor-type variables.
Fetch with meta_factors. Only needed if either use_value_labs or use_in
are TRUE.

meta_dictionary
A data frame containing variable names (column field_name) and labels (col-
umn field_label). Fetch withmeta_dictionary. Only needed if use_header_labs
is TRUE.

translate_logic 35

on_error What to do if one or more elements of statements can’t be translated into valid R
expressions? Options are "ignore" (return NA for relevant elements), "warn" (re-
turn NA for relevant elements and give warning), or "fail" (throw error). Defaults
to "warn".

Value

A character vector of R-style expressions

Examples

normally would fetch factor metadata with redcap::meta_factors(), but here
we'll create a simple example by hand
df_factors <- data.frame(
field_name = c("head_household”, "head_household"),
value = c("0", "1"),
label = c("No", "Yes"),
stringsAsFactors = FALSE
)

redcap_logic <- "head_household=1 and age<>\"\""
translate_logic(redcap_logic, meta_factors = df_factors)

==, 34 rconn, 2,4, 8, 11-15, 17-21, 24-29, 30, 32, 33
%in%, 34 readr::read_csv, 5, 9

reclass, 31
chron::times, 5,9, 31 recode_labels, 32

redcap_version, 33
delete_records, 2

fetch_database, 3 Sys.getenv, 30

fetch_records, 3,6, 7, 14,17, 32 tibble, 3,6, 7, 10, 11, 13-22, 24, 25, 27, 28

generate_queries, 10 translate_logic, 10, 33

httr::config(), 30 xml_document, 23, 29

httr::POST, 30

import_records, 12
is.na, 34

lubridate::as_date, 5, 9, 31
lubridate: :as_datetime, 27
lubridate: :parse_date_time, 5, 9, 31, 32

meta_arms, 13

meta_dictionary, 10-12, 14, 16, 17, 22, 32,
34

meta_events, 15

meta_factors, 16, 34

meta_fields, 18

meta_forms, 19

meta_mapping, 20

meta_repeating, 21

parse_logging, 22
parse_xml, 23
project_dags, 24
project_info, 25
project_logging, 22, 26
project_users, 27
project_users_dags, 28
project_xml, 23, 29

queryr: :query, 12

36

	delete_records
	fetch_database
	fetch_records
	generate_queries
	import_records
	meta_arms
	meta_dictionary
	meta_events
	meta_factors
	meta_fields
	meta_forms
	meta_mapping
	meta_repeating
	parse_logging
	parse_xml
	project_dags
	project_info
	project_logging
	project_users
	project_users_dags
	project_xml
	rconn
	reclass
	recode_labels
	redcap_version
	translate_logic
	Index

